
Introduction

Dynamical Systems

In the research prior to our experimentation, we studied many systems, one of 
which was a Linear Dynamical System. These systems are deterministic, which 
means that for one input or system-state, only one output can arise. These 
systems are in constant evolution because the input is constantly changing due to 
the fact that they are recursive systems (output gets fed in as new input). This is 
remarkably important because they represents natural systems. If one were to 
change the initial conditions slightly, the new behavior would be very similar to 
the previous behavior because the function guiding the mechanics are so simple. 
Quite often, the system will find an orbit, that is an input that when iterated will 
eventually lead back to that same input (we call the amount of time or number of 
iterations for this to occur the “period”).


Chaotic Dynamical Systems

Unlike Linear Dynamical Systems, Chaotic Dynamical systems are very 
sensitive. They do not always exhibit the same narrowing in on an orbit like 
Linear systems. They love to jump around. Because they’re so volatile, a small 
change in what was originally inputed may change the entire behavior of the 
system. We call this sensitive dependence on initial conditions. This is observed 
because a small change can build on itself as the function is iterated. At lower 
parameters such as a constant and small driving force, or a system where the 
feedback from the system is relatively negligible, the system may converge on 
one point because the driving force overrides the small feedback and all that is 
seen is the system’s reaction to simple driving factor. As the parameters are 
raised however and the system’s behavior becomes more dependent on its own 
feedback to the driving force combined with the driving force, we begin to see 
Chaos ensue. For instance, if in a pool of water one of the walls of the pool is 
oscillating at a constant rate and causing ripples in the water that travel to the 
opposite side of the pool. These ripples bounce off the opposite wall and combine 
with the incoming ripples to create secondary feedback. This, in turn, affects the 
other incoming waves, once again changing the behavior or the ripples until the 
movement is essentially Chaotic. Our objective was to understand these 
dynamics in the simplest of cases.  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Double Pendulum


Design

We had two masses suspended from a bar with a spring connecting them. On the 
same plane as these masses, we had two probes that used sound waves to 
measure the distance between them and the closest object that obstructed these 
waves. We conducted many experiments with this setup, one in which we 
displaced both masses in opposite directions, one in which we displaced both 
masses in the same direction, and one in which we displaced one ball away from 
the other. The data from the latter two of these experiments is detailed below. 
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Parallel Motion

In this very simple case, both masses are displaced from their equilibrium by the 
same amount in the same direction. Mass one began farther away from its probe, 
and mass two an equal distance closer to its probe. When the masses were 
released, they fell toward their equilibrium points. Each mass’ motion was 
independent of the other because they were not displaced relative to each other 
and no forces in the system caused them to become displaced relative to each 
other and therefore the spring was neither stretched nor compressed. Each mass 
oscillates about its equilibrium position like a simple harmonic oscillator.  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Phase Shift

In this experiment, only one of the masses (mass 1) was displaced from its 
equilibrium. When released, it began to fall back toward its equilibrium. However, 
because the mass had acquired velocity, it overshot its equilibrium and 
compressed the spring slightly and thus displaced the second mass. The first 
mass then continued to oscillate about its equilibrium and transfer its remaining 
energy to the second mass. Once all of the energy had been transferred and the 
first mass was inert, the second was at maximum kinetic energy and thus in full 
swing. This cycle continues. It’s an example of a coupled oscillator, which means 
the velocity and location of one of the masses depends on the other. If one were to 
isolate the motion of one of the masses, we can see alternating periods of 
maximal and minimal movement. The envelope of this motion is sinusoidal in 
form and referred to as a “beat.”
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Design

Attached to either side of a metal strip clamped 
between two blocks of wood were springs, one of 
which was connected to a motor whose rotation 
rate and amplitude we could finely control. Near 
the trajectory of the pendulum we placed a 
magnetic probe (pictured in the upper right) that 
would tell us the magnetic field strength at that 
point at any given time; because we had a magnet 

attached to the top of 
the pendulum, we 
would use this data 
to infer the position of the probe. Among the most 
interesting pieces of data we collected were Phase 
Space plots. These plot velocity against distance on 
a coordinate plane. We used this plot because it 
delivers an enormous amount of information about 
the nature of the system as we can think of any 
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Driven Inverted Pendulum
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ordered pair as a system-
state.  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Bifurcation Diagram

One of the most fascinating aspects of 
this project to me were the formulaic 
analogs to the systems we were 
studying. Pictured here is the output of 
a Java program I wrote to generate 
what’s called a bifurcation diagram. 
This is generated by the incredibly 
simple equation output = k(input-
input^2). Moving from left to right in 
Th.e image, we vary the k parameter 
whose domain are real numbers 
between 1 and 5. For each of these k 
values, we choose any starting input 
between 0 and 1 (the diagram is 
resistive to the starting input) and 
feed the function’s output for each 
calculation in as its next input. For 
many small k values, we see that the 

output settles to a singular state in the 
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range of 0 to 1 where the function’s input is equal to its output. The point to 
which this recursively defined function settles steadily increases until an 
amazing thing happens: it bifurcates. At this point, k is approximately equal to 
3.03. The system beings to alternate between two states with a regular period for 
another large stretch of k values. Then, another bifurcation, and another, and 
another, until the state of the system jumps into restlessness where it does not 
settle down to any point or set of points. We call this Chaos. This is seen on the 
diagram as a smear of black. Within this Chaotic period lies transient moments of 
tranquility where the function finally finds a few points to settle on, however, this 
is short-lived as it inevitably erupts once again into Chaos. Remarkably, period 
doubling such as this is observed in physical dynamical systems.  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Further Investigations

I’ve dealt a lot with dynamical systems since Summer Ventures. I’ve made Java 
programs that create Cellular Automata (upper left), model the motion of a ball 
bouncing within a box without the effects of gravity or friction (above), and 
model the motion of a ball subject to such forces (left). 
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