Introduction

Dynamical Systems

In the research prior to our experimentation, we studied many systems, one of
which was a Linear Dynamical System. These systems are deterministic, which
means that for one input or system-state, only one output can arise. These
systems are in constant evolution because the input is constantly changing due to
the fact that they are recursive systems (output gets fed in as new input). This is
remarkably important because they represents natural systems. If one were to
change the initial conditions slightly, the new behavior would be very similar to
the previous behavior because the function guiding the mechanics are so simple.
Quite often, the system will find an orbit, that is an input that when iterated will
eventually lead back to that same input (we call the amount of time or number of
iterations for this to occur the “period”).

Chaotic Dynamical Systems

Unlike Linear Dynamical Systems, Chaotic Dynamical systems are very
sensitive. They do not always exhibit the same narrowing in on an orbit like
Linear systems. They love to jump around. Because they’re so volatile, a small
change in what was originally inputed may change the entire behavior of the
system. We call this sensitive dependence on initial conditions. This is observed
because a small change can build on itself as the function is iterated. At lower
parameters such as a constant and small driving force, or a system where the
feedback from the system is relatively negligible, the system may converge on
one point because the driving force overrides the small feedback and all that is
seen is the system’s reaction to simple driving factor. As the parameters are
raised however and the system’s behavior becomes more dependent on its own
feedback to the driving force combined with the driving force, we begin to see
Chaos ensue. For instance, if in a pool of water one of the walls of the pool is
oscillating at a constant rate and causing ripples in the water that travel to the
opposite side of the pool. These ripples bounce off the opposite wall and combine
with the incoming ripples to create secondary feedback. This, in turn, affects the
other incoming waves, once again changing the behavior or the ripples until the
movement is essentially Chaotic. Our objective was to understand these
dynamics in the simplest of cases.

Page 1



Double Pendulum
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Design

We had two masses suspended from a bar with a spring connecting them. On the
same plane as these masses, we had two probes that used sound waves to
measure the distance between them and the closest object that obstructed these
waves. We conducted many experiments with this setup, one in which we
displaced both masses in opposite directions, one in which we displaced both
masses in the same direction, and one in which we displaced one ball away from
the other. The data from the latter two of these experiments is detailed below.
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Motion in-phase Mass 2

Paraliel Motion

Parallel Motion

In this very simple case, both masses are displaced from their equilibrium by the
same amount in the same direction. Mass one began farther away from its probe,
and mass two an equal distance closer to its probe. When the masses were
released, they fell toward their equilibrium points. Each mass’ motion was
independent of the other because they were not displaced relative to each other
and no forces in the system caused them to become displaced relative to each
other and therefore the spring was neither stretched nor compressed. Each mass
oscillates about its equilibrium position like a simple harmonic oscillator.
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Phase shift
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Phase Shift

In this experiment, only one of the masses (mass 1) was displaced from its
equilibrium. When released, it began to fall back toward its equilibrium. However,
because the mass had acquired velocity, it overshot its equilibrium and
compressed the spring slightly and thus displaced the second mass. The first
mass then continued to oscillate about its equilibrium and transfer its remaining
energy to the second mass. Once all of the energy had been transferred and the
first mass was inert, the second was at maximum kinetic energy and thus in full
swing. This cycle continues. It’s an example of a coupled oscillator, which means
the velocity and location of one of the masses depends on the other. If one were to
isolate the motion of one of the masses, we can see alternating periods of
maximal and minimal movement. The envelope of this motion is sinusoidal in
form and referred to as a “beat.”
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Driven Inverted Pendulum
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Design Phase Space
Attached to either side of a metal strip clamped

between two blocks of wood were springs, one of
which was connected to a motor whose rotation

rate and amplitude we could finely control. Near

the trajectory of the pendulum we placed a '

Velocity

magnetic probe (pictured in the upper right) that
would tell us the magnetic field strength at that
point at any given time; because we had a magnet

attached to the top of

the pendulum, we Distance from probe

would use this data

to infer the position of the probe. Among the most
interesting pieces of data we collected were Phase

| . ssem . I B ansen Space plots. These plot velocity against distance on
a coordinate plane. We used this plot because it

delivers an enormous amount of information about

the nature of the system as we can think of any
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ordered pair as a system-
state.
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Applet Viewer: drawingBall.class
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Applet started.

Applet Viewer: player.class
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Th.e image, we vary the k parameter

input”"?). Moving from left to right in
whose domain are real numbers

values, we choose any starting input

One of the most fascinating aspects of
this project to me were the formulaic
studying. Pictured here is the output of
a Java program I wrote to generate
what’s called a bifurcation diagram.
This is generated by the incredibly
between 1 and 5. For each of these k
between O and 1 (the diagram is
resistive to the starting input) and
feed the function’s output for each

analogs to the systems we were
calculation in as its next input. For

Bifurcation Diagram
simple equation output

Applet Viewer: theBallBouncing.class
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many small k values, we see that the
output settles to a singular state in the



range of O to 1 where the function’s input is equal to its output. The point to
which this recursively defined function settles steadily increases until an
amazing thing happens: it bifurcates. At this point, k is approximately equal to
3.03. The system beings to alternate between two states with a regular period for
another large stretch of k values. Then, another bifurcation, and another, and
another, until the state of the system jumps into restlessness where it does not
settle down to any point or set of points. We call this Chaos. This is seen on the
diagram as a smear of black. Within this Chaotic period lies transient moments of
tranquility where the function finally finds a few points to settle on, however, this
is short-lived as it inevitably erupts once again into Chaos. Remarkably, period
doubling such as this is observed in physical dynamical systems.
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Further Investigations

I've dealt a lot with dynamical systems since Summer Ventures. I've made Java
programs that create Cellular Automata (upper left), model the motion of a ball
bouncing within a box without the effects of gravity or friction (above), and
model the motion of a ball subject to such forces (left).
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