

Question For Tara

Joe Puccio

Today

Finding the matrix equivalent of a Linear Transformation

Let T_θ be the transform that defines the rotation of a vector θ° counter-clockwise.

Let \vec{e}_1 and \vec{e}_2 be the unit basis vectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ respectively.

It was said in class that:

$$T_\theta(\vec{e}_1) = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$$

which can also be expressed in this way:

$$\mathbf{A} \times \vec{e}_1 = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$$

where \mathbf{A} is the matrix of the transform T_θ .

Never mind. I think I understand.