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Chque Graphs

c A cllque is a graph Where every Vertex is Connected
via an edge to every other vertex

* A clique graph is a graph where each connected
component is a clique

* The concept of clustering is closely related to clique
graphs. Every partition of n elements into k clusters
can be represented as a clique graph
on n vertices with k cliques.

A
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Transformmg Graphs into a Chque Graphs

* Clusters are maximal cliques (cliques not contained
in any other complete subgraph)

* 1,6,7 is a non-maximal clique.

* An arbitrary graph can be transformed into a clique

graph by adding or removing edges
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Corrupted Chques Problem

Determme the smallest number of edges that need be
added or removed to transform a graph to a clique

graph

Input: A graph G

Output: The smallest number of edge additions
and/or removals that transforms G into a clique

graph
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Distance Graphs

* Onecanturna d1stance matrix into a dlstance graph

— Genes or Species are vertices of the graph
— Choose a distance threshold &

— If the distance between two vertices is below &, draw
an edge between them

— The resulting graph may contain cliques

— These cliques represent clusters of closely located
data points!
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Transformm g

Dlstance Gra 3 h mtoCh:ue Gra rh

The distance graph
(threshold 6=7) is
transformed into a
clique graph after
removing the two
highlighted edges
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Figure 10.6 The distance graph (b) for & =
can be traréformed into a clique graph (c
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(b) Distance graph for@ = 7

Comp 555

(a) Distance matrix, d (distances shorker than 7 ae shown in
bold)

(c) Cligque graph

Spring 2015

After transforming
the distance graph
into the clique
graph, the dataset is
partitioned into three
clusters

7 is not quite a cique graph. However, it
) by removing edges (g1, g10) and (g1,90).



Heuristics for Corrupted Clique Problem

. Corrupted Chques problem is NP Hard some
heuristics exist to approximately solve it:

* CAST (Cluster Affinity Search Technique): a
practical and fast algorithm:

— CAST is based on the notion of genes close to
cluster C or distant from cluster C

— Distance between gene i and cluster C:

d(i,C) = average distance between gene i and all genes in C

Gene i is close to cluster C if d(i,C)< € and distant otherwise
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CAST Algonthm

CAST(S. G, &)

1

2 P& @

3 while S + @

4. v € vertex of maximal degree in the distance graph G
5. C < {v}

6 while a close gene j not in Cor distant gene j in C exists
7 Find the nearest close gene inotin Cand add itto C
8. Remove the farthest distant gene jin C

9. Add cluster C to partition P

10. S&S\C

11. Remove vertices of cluster C from the distance graph G

12. return P

S - set of elements, G - distance graph, 6 - distance threshold
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Evolution and DNA Analysis:

* For roughly 100 years scientists were unable to figure
out which family the giant panda belongs to

* Giant pandas look like bears but have features that are
unusual for bears and typical for raccoons, e.g., they do
not hibernate

* In 1985, Steven O’'Brien and colleagues solved the giant
panda classification problem using DNA sequences and
algorithms
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Evolutionary Tree of Bears and Raccoons
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Evolutionary Trees: DNA-based Approach

. 40 years ago: Emlle Zuckerkandl and Lmus
Pauling brought reconstructing evolutionary
relationships with DNA into the spotlight

* In the first few years after Zuckerkandl and

Paul

stud

ing proposed using DNA for evolutionary

ies, the possibility of reconstructing

evo)

utionary trees by DNA analysis was hotly

debated

* Now it is a dominant approach to study
evolution.
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Out of Africa Hypothe51s

. Around the tlme the glant panda rlddle was
solved, a DNA-based reconstruction of the
human evolutionary tree led to the Out of
Africa Hypothesis that claims our most ancient
ancestor lived in Africa roughly 200,000 years
ago

* Largely based on mitochondrial DNA
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13
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Non-African

33 Mkamba
34 Ewondo
35 Bamileke

t of Africa2.htm
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36 Lisongo
37 Yoruba
82 a8 Yoruba

African

o 39 Mandenka
1007 ——40 Effik
41 Effik

42 Ibo
08 43 Ibo
45 Biaka
r46 Biaka
47 Mbenz
48 Kikuyu

49 Hausa
| — ~ 50 Mbuti

8_ 151 Mbuti
| -52 San
53 San

Human Evolutionary Tree (contd)

http://www.mun.ca/biology/scarr/Ou

4/6/15



The Origin of Humans:
” Out ofAfrlca VS Multlre:_ 1ona1 H‘ ' tes

Out of Africa: Multiregional:
— Humans evolved in — Humans evolved in the last two
Africa ~150,000 years million years as a single species.

ago
— Humans migrated out
of Africa, replacing

Independent appearance of modern
traits in different areas

other humanoids — Humans migrated out of Africa

;li:)und the f(;il()be mixing with other humanoids on
— There is no direct the wa

descendence from y , .

Neanderthals — There is a genetic continuity from

Neanderthals to humans
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mtDNA analysis supports
Qut.of. Africa.. Hypothesis ...

* African origin of humans inferred from:
— African population was the most diverse
(sub-populations had more time to diverge)

— The evolutionary tree separated one group of
Africans from a group containing all five
populations.

— Tree was rooted on branch between groups ot
greatest difference.
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Evolutionary Tree of Humans (mtDNA)

The evolutionary
tree separates one
group of Africans
from a group
containing all five
populations.

Vigilant, Stoneking, Harpending, Hawkes, and Wilson (1991)
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Evolutionary Tree of Humans: (microsatellites)

Nelghborjomlng

tree for 14 human : f LCZ”P'“m
populations s Yorth Erope
genotyped with 30 || ,—cooum
microsatellite loci. l- sfamr (0
& 100 MayanSurui
s

Melanesian
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Human M1grat10n Out of Afr1ca

1. Yorubans

2. Western Pygrr!ies/ p - e

3. Eastern Pygmies 4 L'V

4. Hadza v Ty
5. 'Kung j \

T4

130,000 yrs Ny |
- J 13,000 yrs

40,000-60,000 yrs

http:/ /www.becominghuman.org
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Evolu’uonary Trees

How are these trees built from DNA sequences?
— leaves represent existing species
— internal vertices represent ancestors
— root represents the oldest evolutionary ancestor
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Rooted and Unrooted Trees

In the unrooted tree the position of
the root (“oldest ancestor”) is
unknown. Otherwise, they are like
rooted trees

(a) Unrooted tree (b) Rooted tree (c) The same
rooted tree

4/6/15 Comp 555 Spring 2015 20



D1stances 1n Trees

* Edges may have weights reflecting;:

— Number of mutations on evolutionary path
from one species to another

— Time estimate for evolution of one species into
another

* In a tree T, we often compute

di].( T) - tree distance between i and j
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D1stance 1n Trees

d;4=12+13+14+17+ 13 =69
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D1stance Matrix

* Given n species, we can compute the nxn dzstance
matrix D;;

* D, may be defined as the edit distance between a

gene in species i and species j, where the gene of
interest is sequenced for all n species.

D;; - edit distance between i and j
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Edlt Dlstance vs. Iree Dlstance

. leen n species, we can compute the nxn dzstance
matrix D;;

* D, may be defined as the edit distance between a
gene in species 1 and species j, where the gene of
interest is sequenced for all n species.

D;; - edit distance between i and j

Note the difference with

di]-( T) - tree distance between i and j
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F1tt1ng Dlstance Matrlx

* Given n species, we can compute the nxn
distance matrix D,

* Evolution of these genes is described by a tree
that we don’t know.

* We need an algorithm to construct a tree that
best fits the distance matrix D
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F1ttmg D1stance Matrlx

Lengths of path In an (unknown) tree T

/_H
* Fitting means D;; = d;(T)

Edit distance between species (known)
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Reconstructmg a 3 Leaved Tree

. Tree reconstructmn for any 3x3 matr1x is
straightforward
* We have 3 leaves i, j, k and a center vertex c

Observe:

dic + djc -

dic + dyc = Dy,
djc + dkc = Djk
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Reconstructmg a 3 Leaved Tree (cont’d)

2d;; + gjc + dk9 =D; + Dy

di. =(D; + Dy — D;)/2
. @ Z Similarly,
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Trees w1th > 3 Leaves

* An unrooted tree W1th n leaves has 2n 3 edges

PR USRS,

* This means fitting a given tree to a distance matrix D
requires solving a system of “n choose 2” or 2 x(x-1)
equations with 2n-3 variables (over-specified)

* This is not always possible to solve for n >3
given arbitrary/noisy distances

* Assumes all internal node are of degree 3
(i.e. all mutations separate into 2 cases)
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Addltwe D1stance Matrlces

Matrix D is
Additive if there ato 2 i1
. . B|2 0 4 4
exists a tree T with c|+ + o 2
d(T) = D;forall i,
'A B C D
NON-ADDITIVE Bl2 0 3 2 ?
] cl2 3 0 2
otherwise Dj2 2 2 0
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Distance Based Phylogeny Problem

’ Goal Reconstruct an evolutlonary tree from a
distance matrix

* Input: n x n distance matrix Di]-
* Output: weighted tree T with n leaves fitting D

* If D is additive, this problem has a solution and
there is a simple algorithm to solve it
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* Find neighboring leaves i and j with common parent k
* Remove the rows and columns of i and j

* Add a new row and column corresponding to k, where

the distance from k to any other leaf m can be computed
as:

D,.= (D, +D

»’Compress j and j int
,” k, iterate algorithm for
rest of tree
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Fmdmg Nelghbormg Leaves

Or solution assumes that we can easily find
neighboring leaves given only distance values

How might one approach this problem?

* Itis not as easy as selecting a pair of closest
leaves.
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Fmdmg Nelghbormg Leaves

* Closest leaves aren’t necessarily neighbors
* 1 and j are neighbors, but (d; =13) > (d; =12)

Finding a pair of neighboring leaves is
a nontrivial problem! (we’ll return to it later)
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Neighbor ]oining Algorithm

. In 1987 Naruya Saltou and Masatosh1 Ne1 developed a
neighbor joining algorithm for phylogenetic tree
reconstruction

* Finds a pair of leaves that are close to each other but far
from other leaves: implicitly finds a pair of neighboring
leaves

* Advantages: works well for additive and other non-
additive matrices, it does not have the flawed molecular
clock assumption
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Degenerate Tr1ples

* A degenerate triple is a set of three distinct
elements 1<i,j,ksn where D;; + D; = Dy

Called degenerate because it implies i, j, and k are
collinear.

* Element j in a degenerate triple 1,7,k lies on the

evolutionary path fromi to k (or is attached to
this path by an edge of length 0).
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Lookmg for Degenerate Trlples

* If distance matrix D has a degenerate triple 1,7,k
then j can be “removed” from D thus reducing
the size of the problem.

* If distance matrix D does not have a degenerate
triple i,j,k, one can “create” a degenerative triple
in D by shortening all hanging or leaf edges in
the tree.
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Shortenmg Hangmg Edges

* Shorten all “hanging” edges (edges that connect
leaves) until a degenerate triple is found

A B C

A o 4 10
B 4 0 8
'C 10 8 o
P 9 7 9

= ¢~ o|T

-
o

Now (A,B,D)
are degenerate

s B I |

L
I
S R N [y

TOT
o
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Fmdmg Degenerate Trlples

. If there is no degenerate tr1p1e all hangmg edges are
reduced by the same amount 0, so that all pair-wise
distances in the matrix are reduced by 26 .

* Eventually this process collapses one of the leaves (when
0 = length of shortest hanging edge), forming a
degenerate triple i,j,k and reducing the size of the
distance matrix D.

* The attachment point for j can be recovered in the
reverse transformations by saving D;; for each collapsed
leaf.
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Reconstructm g

Trees for AddltlveDlstance Matrlces

3 2 5
1A B CD (D—0-0 (&)
A o 4 10 o 1
‘B 4 0 8§ 7 4 Q
IC 10 8 o0 9
D 9 7 e 0

| A B C D
A a 2 8 7
B! 2 0 6 s Po— A
|2 ] = > ; « B
C 8 6 0 7 L P
‘D 7 5 7 0 -
4 4
AT D (4) O ©
A 0 8 7
C 8 o 7 > o
D 7 7 0
=3 [
o 1 1
A CD
A 0 2 1 : A ) 3
cC 2 0 1 i o= L O
P 1 1 o k-
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AddltlvePhylogeny Algorlthm

= AddltlvePhongeny(D)

2 if Dis a 2 x 2 matrix

3 T = tree of a single edge of length D; ,
4 return T

5 if D is non-degenerate

6. o = trimming parameter of matrix D
7 forall 1 <i#j<n

8 j=D; - 26

9

]
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Add1t1vePhylogeny cont'd)

F|nd a trlple I, J, ki Dsuch that D; + D Dk
x =D
Remove j row and j column from D
T = AdditivePhylogeny(D)
Add a new vertex v to T at distance x from jto k
Add j back to T by creating an edge (v,)) of length O
for every leaf /in T
if distance from / to v in the tree # D,

output “matrix is not additive”

return
Extend all “hanging” edges by length 6
return 7

1.
2.
3.
4.
5.
6.
/.
8.
9

10.

— —]
N =
| |
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The Four Point Condltlon

’ AddltwePhylogeny Algorlthm prov1des a Way
to check if distance matrix D is additive (i.e. it
does not converge to a single 2 by 2 matrix)

* An even more efficient additivity check is the
“four-point condition”

* Let I<1,jkl<nbefour distinct leaves in a tree
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The Four Pomt Condltlon (cont d)

Compute 1 D Dk,,2 D, +D,,3 D +D
(2 (2
N N\

ot 7 .1

2 and 3 represent the 1
same number: the e 1 1 represents a
length of all edges + smaller
the middle edge (it is number: the
counted twice) length of all
0 edges - the
middle edge
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The Four Point Condition: Theorem

. The four pomt condltlon for the quartet 1,7,k l is
satisfied if two of these sums are the same, with
the third sum smaller than these first two. How
many tests?

C, =nl/ (4! (n-4!)) = n(n-1)(n-2)(n-4)/24

e Theorem : An n x n matrix D is additive if and
only if the four point condition holds for every
quartet 1<i7kl<n
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Next Time

e How to create trees 1f the matrices are not
additive
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