
The Burrows-Wheeler
Transform and
Bioinformatics

J. Matthew Holt
April 1st, 2015

Outline

• Recall Suffix Arrays
• The Burrows-Wheeler Transform
• The FM-index
• Pattern Matching
• Multi-string BWTs
• Merge Algorithms

Recall Suffix Arrays

• Rotate
• Sort

Index (N) Rotations Suffix Array

0 ACACGGACA$ $ACACGGACA

1 CACGGACA$A A$ACACGGAC

2 ACGGACA$AC ACA$ACACGG

3 CGGACA$ACA ACACGGACA$

4 GGACA$ACAC ACGGACA$AC

5 GACA$ACACG CA$ACACGGA

6 ACA$ACACGG CACGGACA$A

7 CA$ACACGGA CGGACA$ACA

8 A$ACACGGAC GACA$ACACG

9 $ACACGGACA GGACA$ACAC

The suffix array for string “ACACGGACA$”
“$” is just an end-of-string character

Recall Suffix Arrays (cont.)
• N - number of bases
• k - pattern length
• Space complexity: O(N*log(N)) bits

• Stored as offsets into original string
• N offsets that require log(N) bits per value

• Search time: O(k*log(N)) operations
• Binary search require O(log(N)) string comparisons
• Each string comparison requires O(k) symbol

comparisons
• Problem:

• O(N*log(N)) is too large when strings are billions of
characters long

The Burrows-Wheeler
Transform

Index (N) Rotations Suffix Array BWT

0 ACACGGACA$ $ACACGGACA A

1 CACGGACA$A A$ACACGGAC C

2 ACGGACA$AC ACA$ACACGG G

3 CGGACA$ACA ACACGGACA$ $

4 GGACA$ACAC ACGGACA$AC C

5 GACA$ACACG CA$ACACGGA A

6 ACA$ACACGG CACGGACA$A A

7 CA$ACACGGA CGGACA$ACA A

8 A$ACACGGAC GACA$ACACG G

9 $ACACGGACA GGACA$ACAC C

• Burrows & Wheeler, 1994
• BWTs are permutations of the

original string
• Implicit suffix array

• “Last symbol” in suffix
• “Previous symbol” to suffix

BWT algorithm

BWT (string text) �

tablei = Rotate(text, i) for i = 0..len(text)-1 �

sort table alphabetically �

return (last column of the table)

tarheel$
arheel$t
rheel$ta
heel$tar
eel$tarh
el$tarhe
l$tarhee
$tarheel

$tarheel
arheel$t
eel$tarh
el$tarhe
heel$tar
l$tarhee
rheel$ta
tarheel$

BWT(“tarheels$”) = “ltherea$”

BWT in Python

def BWT(s):
 # create a table, with rows of all possible rotations of s
 rotation = [s[i:] + s[:i] for i in xrange(len(s))]
 # sort rows alphabetically
 rotation.sort()
 # return (last column of the table)
 return "".join([r[-1] for r in rotation])

Inverting a BWT
•  A property of a transform is that there is no

 information loss and they are invertible.

inverseBWT(string s)

 add s as the first column of a table strings

 repeat length(s)-1 times:

 sort rows of the table alphabetically

 add s as the first column of the table

 return (row that ends with the 'EOF' character)

l
t
h
e
r
e
a
$

l$
ta
he
ee
rh
el
ar
$t

l$t
tar
hee
eel
rhe
el$
arh
$ta

l$ta
tarh
heel
eel$
rhee
el$t
arhe
$tar

l$tar
tarhe
heel$
eel$t
rheel
el$ta
arhee
$tarh

l$tarh
tarhee
heel$t
eel$ta
rheel$
el$tar
arheel
$tarhe

l$tarhe
tarheel
heel$ta
eel$tar
rheel$t
el$tarh
arheel$
$tarhee

l$tarhee
tarheel$
heel$tar
eel$tarh
rheel$ta
el$tarhe
arheel$t
$tarheel

Inverting in Python
def inverseBWT(s):
 # initialize table from s
 table = [c for c in s]
 # repeat length(s) - 1 times
 for j in xrange(len(s)-1):
 # sort rows of the table alphabetically
 table.sort()
 # insert s as the first column
 table = [s[i]+table[i] for i in xrange(len(s))]
 # return (row that ends with the 'EOS' character)
 return table[[r[-1] for r in table].index('$')]

BWT Compression
• Compression

• Tendency to form long runs
• Run-length encoding (RLE)

• Can be stored as: 
ACG$C3AGC

• Real dataset (Mouse DNA-seq):
• 200 Giga-bases
• 20 GB using RLE
• ~10% of original size

Index (N) Suffix Array BWT

0 $ACACGGACA A

1 A$ACACGGAC C

2 ACA$ACACGG G

3 ACACGGACA$ $

4 ACGGACA$AC C

5 CA$ACACGGA A

6 CACGGACA$A A

7 CGGACA$ACA A

8 GACA$ACACG G

9 GGACA$ACAC C

FM-Index
• Ferragina & Manzini, 2005
• Enables fast exact

searches
• Takes advantage of “last-

first”relationship between
BWT and suffix array
• See colors on right
• First “A” in BWT

corresponds to first
suffix starting with “A”

Index (N) Suffix Array BWT

0 $ACACGGACA A

1 A$ACACGGAC C

2 ACA$ACACGG G

3 ACACGGACA$ $

4 ACGGACA$AC C

5 CA$ACACGGA A

6 CACGGACA$A A

7 CGGACA$ACA A

8 GACA$ACACG G

9 GGACA$ACAC C

FM-index (cont.)
• A - alphabet size
• FM-index

• (N+1)*A values
• F[i][c] stores the

number of times
symbol c occurs
before index i

• Offset array (O)
• A values
• O[c] stores the index of

the first suffix starting
with symbol c

Index (N) Suffix Array
(not stored) BWT

FM-index
(F)

$ A C G
0 $ACACGGACA A 0 0 0 0
1 A$ACACGGAC C 0 1 0 0
2 ACA$ACACGG G 0 1 1 0
3 ACACGGACA$ $ 0 1 1 1
4 ACGGACA$AC C 1 1 1 1
5 CA$ACACGGA A 1 1 2 1
6 CACGGACA$A A 1 2 2 1
7 CGGACA$ACA A 1 3 2 1
8 GACA$ACACG G 1 4 2 1
9 GGACA$ACAC C 1 4 2 2
10 — — 1 4 3 2

Offset (O) — — 0 1 5 8

Find Predecessor
• The predecessor of index i: 

c = BWT[i] 
predec = O[c]+F[i][c]

• Predecessor of index 1 
c = BWT[1] = ‘C’  
predec = O[‘C’]+F[1][‘C’] = 5+0 = 5

• Predecessor of index 8 
c = BWT[8] = ‘G’ 
predec = O[‘G’]+F[8][‘G’] = 8+1 = 9

• Time to find predecessor: O(1)
• String recovery:

• Start at 0
• Repeatedly find predecessor until

back at 0
• O(N) time to get original string back

Index (N) Suffix Array
(not stored) BWT

FM-index
(F)

$ A C G
0 $ACACGGACA A 0 0 0 0
1 A$ACACGGAC C 0 1 0 0
2 ACA$ACACGG G 0 1 1 0
3 ACACGGACA$ $ 0 1 1 1
4 ACGGACA$AC C 1 1 1 1
5 CA$ACACGGA A 1 1 2 1
6 CACGGACA$A A 1 2 2 1
7 CGGACA$ACA A 1 3 2 1
8 GACA$ACACG G 1 4 2 1
9 GGACA$ACAC C 1 4 2 2
10 — — 1 4 3 2

Offset (O) — — 0 1 5 8

Find k-mer
• All searches occur in reverse order

• Start with full BWT range (0, N)
• Restrict by one symbol at a time

• Find k-mer “ACA”
• Initialize to full range (“”)  

low, high = 0, 10
• Find occurrences of “A”  

low = O[‘A’]+F[low][‘A’] = 1+0 = 1 
high = O[‘A’]+F[high][‘A’] = 1+4 = 5

• Find occurrences of “CA”  
low = O[‘C’]+F[low][‘C’] = 5+0 = 5 
high = O[‘C’]+F[high][‘C’] = 5+2 = 7

• Find occurrences of “ACA”  
low = O[‘A’]+F[low][‘A’] = 1+1 = 2 
high = O[‘A’]+F[high][‘A’] = 1+3 = 4

Index (N) Suffix Array
(not stored) BWT

FM-index
(F)

$ A C G
0 $ACACGGACA A 0 0 0 0
1 A$ACACGGAC C 0 1 0 0
2 ACA$ACACGG G 0 1 1 0
3 ACACGGACA$ $ 0 1 1 1
4 ACGGACA$AC C 1 1 1 1
5 CA$ACACGGA A 1 1 2 1
6 CACGGACA$A A 1 2 2 1
7 CGGACA$ACA A 1 3 2 1
8 GACA$ACACG G 1 4 2 1
9 GGACA$ACAC C 1 4 2 2
10 — — 1 4 3 2

Offset (O) — — 0 1 5 8

Find k-mer (cont.)

• Time complexity - O(k)
• Requires O(k) lookups
• Search time only

dependent on length of
k-mer

• Does not depend on
BWT (data) size!!!

def find(pattern, FMindex):
 lo = 0
 hi = len(Fmindex)
 for l in reversed(pattern):
 lo = O[l] + F[lo][l]
 hi = O[l] + F[hi][l]
 return lo, hi

Application of Exact Pattern
Matching

• Alignment
• Bowtie (2009) and BWA (2009)
• Build a BWT of the reference genome (~2-3 GB)
• Align:

• Given a 100 base pair read
• Cut into smaller (i. e. four 25-mer) pieces
• Exact search for the pieces separately - very

fast using BWT
• Use local alignment to account for errors

• Bowtie2 (2011) and Tophat2 (2013) are still very
prominent and fast aligners

BWTs and String Collections

• We have a BWT of single string
• What if you have multiple strings?

• Concatenate strings together with some
overhead?

• Build each one as a separate BWT and query
each one?

Multi-string BWTs

• MSBWT - a BWT containing a string collection
instead of just a single string

• Earliest: Mantaci et al. (2005), used concatenation
approach

• Bauer et al. (2011) - proposed version we will
discuss today

MSBWT Construction
• Naive Construction:

• Create all rotations for all
strings in the collection

• Sort all rotations together
(Suffix Array)

• Store the last symbols in
each suffix

• Strings are “cyclic”
• Getting the predecessor

always gets a suffix from
the same string

• Impossible to “jump” from
one string to another

Index Rotations Suffix
Array MSBWT

0 ACCA$ $ACCA A
1 CCA$A $CAAA A
2 CA$AC A$ACC C
3 A$ACC A$CAA A
4 $ACCA AA$CA A
5 CAAA$ AAA$C C
6 AAA$C ACCA$ $
7 AA$CA CA$AC C
8 A$CAA CAAA$ $
9 $CAAA CCA$A A

The multi-string BWT for strings “ACCA$” and
“CAAA$”.

MSBWT and FM-index

• Identical Definition
• Find k-mer “CA”

• Initialize to full range (“”)  
low, high = 0, 10

• Find occurrences of “A”  
low = O[‘A’]+F[low][‘A’] = 2+0 = 2 
high = O[‘A’]+F[high][‘A’] = 2+5 = 7

• Find occurrences of “CA”  
low = O[‘C’]+F[low][‘C’] = 7+0 = 7 
high = O[‘C’]+F[high][‘C’] = 7+2 = 9

Index Suffix
Array MSBWT

FM-index

$ A C
0 $ACCA A 0 0 0
1 $CAAA A 0 1 0
2 A$ACC C 0 2 0
3 A$CAA A 0 2 1
4 AA$CA A 0 3 1
5 AAA$C C 0 4 1
6 ACCA$ $ 0 4 2
7 CA$AC C 1 4 2
8 CAAA$ $ 1 4 3
9 CCA$A A 2 4 3
10 — — 2 5 3

Offset (O) — — 0 2 7

MSBWT Merging
• Given two MSBWTs, can we merge them into a

single structure?
• Improved compression if data is similar
• Single search through all data
• Fundamental operation in many data structures

• Core concept:
• MSBWT is an implicit suffix array
• Suffix array is a sorted list of suffixes
• Merge two sorted lists (easy!)

Merging - Overview

22

Suffix BWT
$ACCA A
$CAAA A
A$ACC C
A$CAA A
AA$CA A
AAA$C C
ACCA$ $
CA$AC C
CAAA$ $
CCA$A A

Suffix BWT0

$ACCA A
A$ACC C
ACCA$ $
CA$AC C
CCA$A A

Suffix BWT1

$CAAA A
A$CAA A
AA$CA A
AAA$C C
CAAA$ $

Interleave
0
1
0
1
1
1
0
0
1
0

Inputs Algorithm (??) Output

Calculating the Interleave

• Holt & McMillan (2014)
• Algorithm Intuition:

• Initialize interleave as concatenation of BWTs
• Most-significant-symbol radix sort on implicit

suffix array
• Converges to correct interleave

23

Full Example

24

I0 S0 B0

0 $ACCA A
0 A$ACC C
0 ACCA$ $
0 CA$AC C
0 CCA$A A
1 $CAAA A
1 A$CAA A
1 AA$CA A
1 AAA$C C
1 CAAA$ $

Initial
I2 S2 B2

0 $ACCA A
1 $CAAA A
0 A$ACC C
1 A$CAA A
1 AA$CA A
1 AAA$C C
0 ACCA$ $
0 CA$AC C
1 CAAA$ $
0 CCA$A A

$

A

C

I1 S1 B1

$ACCA A
$CAAA A
A$ACC C
ACCA$ $
A$CAA A
AA$CA A
AAA$C C
CA$AC C
CCA$A A
CAAA$ $

0

0

0

0

0
1
1
1

1

1

Iter 1 Iter 2

Sx = implicit suffix array given interleave Ix, Bx = BWT given the interleave Ix
Merge for two BWTs of strings “ACCA$” and “CAAA$”. The correct interleave is found once no change

occurs from iteration 2 to iteration 3. Sx and Bx are not actually stored in memory.

I3 S3 B3

0 $ACCA A
1 $CAAA A
0 A$ACC C
1 A$CAA A
1 AA$CA A
1 AAA$C C
0 ACCA$ $
0 CA$AC C
1 CAAA$ $
0 CCA$A A

Iter 3
Suffix BWT0

$ACCA A

A$ACC C

ACCA$ $

CA$AC C

CCA$A A

Suffix BWT1

$CAAA A

A$CAA A

AA$CA A

AAA$C C

CAAA$ $

Inputs

Construction via Merging

• Holt & McMillan (2014)
• Divide-and-conquer:

• Build BWTs for each
individual string

• Merge until only one
BWT remains

• Good for long non-
uniform strings

25

Illustration of merge for 512 strings

MSBWT Applications

• Instead of building a BWT of the reference
genome, build a MSBWT of the sequenced reads

• Arbitrary exact match k-mer queries
• O(k) time
• Enables fast searches/counting

• Recover an arbitrary read of length L from MSBWT
• O(L) time
• Enables extraction of user-selected reads

26

K-mer Search & Extraction

• Basic utilization
• Search for all reads

with a given k-mer
• Extract all reads with

that k-mer or the
reverse-complement
of the k-mer

• Build a consensus

27

k-mer search & consensus builder
Green - k-mer query
Red - forward reads

Blue - reverse complemented reads

Reference-based Searches

• Given a reference genome and
region of that genome

• Split reference into k-mers
• Count the abundance of each k-

mer and plot
• Fast - O(k) time per k-mer
• Similar to a post-alignment

pileup

28

CAST/EiJ at Egr3, counting 40-mers overlapping by 20

DNA-seq

RNA-seq
Lo

g(
co

un
t)

Reference Correction

29

Uncorrected Corrected

CAST/EiJ DNA-seq for annotated gene Igf2

149,838,013: 0 TTGATGGCTCGATGCATTCATTACCTGATCACTGCTCCCG
149,838,033: 0 TTACCTGATCACTGCTCCCGTTATGTAGGGAATGGGTACA

149,838,013: 18 TTGATGGCTCGATGCATTCATTACTTGATCACTGCTCCCG
149,838,033: 17 TTACTTGATCACTGCTCCCGTTATGTAGGGAATGGGTACA

Targeted Assembly

• De novo assembly given a k-mer target known as
the “seed” k-mer

• Extend the seed by counting the occurrence of
each possible extension

• Generates a graph extending from the seed
• Nodes - continuous unambiguous choice of

extensions (similar to a contig)
• Edges - multiple possible choices for extension

30

Targeted Assembly Tool Demo

• Gene
• Mitochondria

31

Practical Adaptations

• Compressed BWT is small
• FM-index is not, O(A*N) for alphabet of size A and

a BWT of length N
• Trade-off, space v. time:

• Use a sampled FM-index
• B - bin size
• Uses O(A*N/B) values
• Requires O(B) time per lookup (for a fixed size B,

this is just a larger constant time lookup)

32

Summary

• Burrows-Wheeler Transform & FM-index
• More compressible
• Last-first relationship
• O(k) search time for arbitrary k-mer
• O(m) recovery for string of length m
• MSBWT for string collections
• Can be merged

33

