The Burrows-Wheeler
Transform and
Bioinformatics

J. Matthew Holt
April 1st, 2015

Outline

Recall Suffix Arrays

The Burrows-Wheeler Transform
The FM-Iindex

Pattern Matching

Multi-string BWTs

Merge Algorithms

Recall Suffix Arrays

e Rotate
e Sort

Index (N)

Rotations

Suffix Array

ACACGGACAYS

$ACACGGACA

CACGGACASA

ASACACGGAC

ACGGACASAC

ACASACACGG

CGGACATACA

ACACGGACAYS

GGACASACAC

ACGGACASAC

GACASACACG

CASACACGGA

ACASACACGG

CACGGACASA

CASACACGGA

CGGACATACA

ASACACGGAC

GACASACACG

$ACACGGACA

GGACASACAC

The suffix array for string “ACACGGACAS”

“$” is just an end-of-string character

Recall Suffix Arrays (cont.)

N - number of bases

K - pattern length

Space complexity: O(N*log(N)) bits

» Stored as offsets into original string

* N offsets that require log(N) bits per value

Search time: O(k*log(N)) operations

* Binary search require O(log(N)) string comparisons

e Each string comparison requires O(k) symbol
comparisons

Problem:

 O(N*log(N)) is too large when strings are billions of
characters long

The Burrows-Wheeler
Transform

e Burrows & Wheeler, 1994

« BWT:

S are permutations of the

original string
* Implicit suffix array

‘Last symbol” in suffix
‘Previous symbol” to suffix

Index (N)

Rotations

ACACGGACAYS

Suffix Array BWT

$ACACGGACA

CACGGACASA

ASACACGGAC

ACGGACASAC

ACASACACGG

CGGACASACA

ACACGGACAS

GGACASACAC

ACGGACASAC

GACASACACG

CASACACGGA

ACASACACGG

CACGGACASA

CAJACACGGA

CGGACASACA

ASACACGGAC

GACASACACG

$SACACGGACA

GGACASACAC

O > | P> | P O | OO0 >

BW' (string text)
table. = Rotate(text, 1) for 1 = 0..len(text)- 1

sort table alphabetically

BW 1 algorithm

return (last column of the table)

tarheel$
arheel$t
rheel$ta
heel$tar
eel$tarh
el$tarhe
1$tarhee
$tarheel

$tarheel
arheel $t
eel$tarh
el$tarhe
heel$tar
1$tarhee

rheel$ta
tarheel$

BWT(“tarheels$”) = “ltherea%”

BWT In Python

def BWT(s):
create a table, with rows of all possible rotations of s
rotation = [s[i:] + s[:1] for 1 in xrange(len(s))]
sort rows alphabetically
rotation.sort()
return (last column of the table)
return "".join([r[-1] for r in rotation])

AQ O 3 D® S5t —

Inverting a BWI

* A property of a transtorm 1s that there 1s no

information loss and they are invertible.
iverseBW'1'(string s)

1$
ta
he

ee

el
ar

$t

add s as the first column of a table strings

repeat length(s)-1 times:
sort rows of the table alphabetically

add s as the first column of the table
return (row that ends with the 'EOF' character)

1$t
tar
hee
eel
rhe

el$
arh
$ta

1$ta
tarh
heel
eel$
rhee
el$t
arhe
$tar

1$tar
tarhe
heel$
eel$t
rheel
el$ta
arhee
$tarh

1$tarh
tarhee
heel$t
eel$ta
rheel$
el$tar
arheel
$tarhe

1$tarhe
tarheel
heel$ta
eel$tar
rheel $t
el$tarh
arheel$
$tarhee

1$tarhee

tarheel$
heel$tar
eel$tarh
rheel$ta
el$tarhe

arheel $t
$tarheel

Inverting in Python

def inverseBWT(s):
1nitialize table from s
table = [c for ¢ 1n s]
repeat length(s) - 1 times
for j i1n xrange(len(s)-1):
sort rows of the table alphabetically
table.sort()
1nsert s as the first column
table = [s[1]+table[1] for 1 1n xrange(len(s))]
return (row that ends with the 'EOS' character)
return table[[r[-1] for r in table].index('$')]

BWT Compression

 Compression
e Jendency to form long runs
* Run-length encoding (RLE)

e Can be stored as:
ACGSC3AGC

* Real dataset (Mouse DNA-seq):
200 Giga-bases
20 GB using RLE
* ~10% of original size

Index (N) Suffix Array BWT

$ACACGGACA

ASACACGGAC

ACASACACGG

ACACGGACAS

ACGGACASAC

CASACACGGA

CACGGACASA

CGGACASACA

GACASACACG

© | 00| N[O | O] BT WO || = | O

GGACASACAC

O Q| > | > | PP O 0|0 >

~VI-Index

* Ferragina & Manzini, 2005
 Enables tast exact
searches
e Jakes advantage of “last-
first”relationship between
BWT and suffix array
e See colors on right
e First “A” iIn BWT
corresponds to first
suffix starting with “A”

Index (N) Suffix Array BWT

0 A

1 ASACACGGAC | C

2 ACASACACGG | G

B~ | W

ACGGACASAC | C

@)

CASACACGGA | A

6 CACGGACASA
/ A
8 GACASACACG | G

9 GGACASACAC

FM-index (cont.)

A - alphabet size FM-index
e FM-Index Index (N) ?nu;,:ns(tﬁ:;?)’ BWT (F)

e (N+1)*A values S

. F[i[c] stores the 0 $ACACGGACA | A |0|0|0]0

! 1 A$ACACGGAC | € |0|1]0]0

number of times > ACAS$ACACGG | G |o|1]1]0

Symbo| C OCCUrS 3 ACACGGACAS$ | $ |O] 1|11

- : 4 ACGGACASAC | € |1]1[1]1

before index | 5 CASACACGGA | A |1]1|2]1

 Offset array (O) 6 CACGGACASA | A |1]2]2]1

e A values 7 CGGACASACA | A [1]3|2]1

* OJc] stores the index of ¢ |[Grbrbrtrbe] @ i]e 2]

. . . 9 GGACASACAC | € |1]4|2]2

the first suffix starting 0 — — 1lal3 02

with symbol ¢ Offset (O) — — |o|1]5]|8

FINd Predecessor

The predecessor of index i:

c = BWTJi]

predec = O[c]+F[i][c]

Predecessor of index 1

c = BWT[1] = ‘C’

predec = O['C’']+F[1]['C’] =5+0 =5

Predecessor of index 8

c = BWT[8] = ‘G’

poredec = O['G’|+F[8]['G’] =8+1 =9

Time to find predecessor: O(1)

String recovery:

e StartatO

 Repeatedly find predecessor until
back at O

 O(N) time to get original string back

Index (N)

Suffix Array

(not stored)

$ACACGGACA

BWT

FM-index
(F)

$ ACG

o
o

ASACACGGAC

ACASACACGG

ACACGGACAS

ACGGACASAC

CASACACGGA

CACGGACASA

CGGACASACA

GACASACACG

OO NI | B~ W IN|[—= (O

GGACASACAC

10

| OO (> (> [(> O0|ea|®|0|>

Offset (O)

O|l=|m|a|a|la|n|na|lo|lo|lo|oO
SO I SO N N VR Y\ T [N I) (G [
w22 = o
LN RIS Y Y g i pig B o Bl fo R Ke)

FINd k-mer

* All searches occur in reverse order : FM-index
. Start with full BWT range (0, N) Index (N) fn“;;"’s‘tﬁ:;?)’ wr (F)

* Restrict by one symbol at a time $ ACG

* Find k-mer "ACA” 0 | $ACACGGACA| A |o|ofo|o

° nitialize to full range (“”) 1 ASACACGGAC Cc |ol1lol0

ow, high =0, 10 2 | ACASACACGG | G [0]|1]1]0

* Find occurrences of "A” 3 ACACGGACAS | ¢ lol1l1]1

ow = O['A]+Fllow]['A] = 1+0 = 1 4 | ACGGACASAC| ¢ [1]1]1]1

nigh = O['Al+F[high][A] = 1+4 = 5 5 | CASACACGGA | A [1]1]2]1

 Find occurrences of “CA” 5 CACGGACASA | A |112]2]1

ow = O['C J+F[low]['C’] = 5+0 =5 7 | CGGACA$ACA | A [1]3[2]1

nigh = O[CJ+F[high][C'] = 5+2 = 7 8 | GACASACACG | G |1]4]2]1

 Find occurrences of “ACA” . GGACASACAC | € 11lal2l2

ow = O['Al+F[low]['/A] = 1+1 =2 0 — — T11al3l2

nigh = O['A’]+F[high][/A'] = 143 =4 Offset (O) — ~ Tol1lsl8

FInd k-mer (cont.)

ime complexity - O(k)

» Requires O(k) lookups def find(pattern, FMindex):

. lo=20
* Search time only hi = len(Fmindex)
dependent on length of for 1 in reversed(pattern):

-mer lo = O[1] + F[lo][1]
hi = O[1] + F[h1][1]
* Does not depend on return lo, hi

BWT (data) size!!!

Application of Exact Pattern
Matching

* Alignment
 Bowtie (2009) and BWA (2009)
* Build a BWT of the reterence genome (~2-3 GB)
e Align:
* Given a 100 base pair read
 Cutinto smaller (i. e. four 25-mer) pieces

» Exact search for the pieces separately - very
fast using BWT

* Use local alignment to account for errors
 Bowtie? (2011) and Tophat? (2013) are still very
prominent and fast aligners

BWTs and String Collections

 We have a BWT of single string
 What if you have multiple strings?
e Concatenate strings together with some
overhead?

 Build each one as a separate BWT and query
each one”

Multi-string BW s

« MSBWT - a BWT containing a string collection

instead of just a single string
e Earliest: Mantaci et al. (2005), used concatenation

approach
 Bauer et al. (2011) - proposed version we will

discuss today

MSBWT Construction

* Naive Construction:

» Create all rotations for all
strings in the collection

e Sort all rotations together
(Suffix Array)

o Store the last symbols in
each suffix

e Strings are “cyclic”

» (Getting the predecessor
always gets a suffix from
the same string

* Impossible to “jump” from
one string to another

Index Rotations i‘:::;(MSBWT
0 ACCAS | $ACCA A
1 CCASA | $CAAA A
2 CASAC | ATACC C
3 ASACC | A$CAA A
4 $SACCA | AASCA A
5 CAAAS | AAASC C
6 AAASC | ACCA$ $
/ AASCA | CASAC C
8 A$CAA | CAAAS $
9 $CAAA | CCA%SA A

The multi-string BWT for strings “ACCAS$” and
“CAAAS”.

MSBWT and FM-index

FM-index

$ A C

e |dentical Definition 0 SACCA A 0/]0]0
* Find k-mer “CA” 1 $CAAA| A 0| 11]0
 Initialize to full range (*”) 2 ASACC C 0120
gwahigh =0, 10 . 3 A$CAA A 0 2 1
ndCene e |4 ImscAl A |03
high = O[*A']+F[high]['A] = 245 = 7 5 |AAASC| € |0 41

* Find occurrences of “CA” 6 ACCAS $ 0|4 |2
low = O['C’]+F[low]['C’] = 7+0 =7 7 CA$AC| C 11412

high = O[‘C’]+F[high]['C'] = 7+2 = 9 5 [CAAAS| S R

9 CCASA A 214 |3

10 — — 2,153

Offset (O)] — — 0| 2|7

MSBWT Merging

Given two MSBWTs, can we merge them into a
single structure?

* Improved compression if data is similar

* Single search through all data

 Fundamental operation in many data structures
Core concepit:

« MSBWT is an implicit suffix array

e Suffix array is a sorted list of suffixes

* Merge two sorted lists (easy!)

Merging - Overview

Inputs Algorithm (?*?) Output
oo G 0 SACCA A
oo T s 1 SCAAA A
casac T o 0 ASACC C
casr 1 ASCAA A

s> 1 o | AssCA A

1 ———

SCAAM | A 0 ACCAS$ $

ASCAA | A 0 CASAC C

RO | R 1 CAAAS $

DAL | © 0 CCASA A
CAAAS | §

22

Calculating the Interleave

 Holt & McMillan (2014)
e Algorithm Intuition:

e |nitialize interleave as concatenation of BWTs

* Most-significant-symbol radix sort on implicit
suffix array

e Converges to correct interleave

23

Inputs
$ACCA A
ASACC C
ACCA$ $
CASAC C
CCASA A

Suffix SAVAE

$CAAA

A

ASCAA

A

AASCA

A

AAASC

C

CAAAS

$

-P

Full Exam

Initial

$ACCA

ASACC

ACCAS$

CASAC

CCA%A

$CAAA

ASCAA

AASCA

AAASC

Ol |22 >0|ea|0

wlalalalajololo|o|o

CAAAS

\SF)

$ >

A

Chr

ole

lter 1 lter 2 lter 3
s Bifl. S; Bl S B
0|$ACCA| A | |O[SACCA| A | |0|$ACCA| A
1[$CAAA| A | [1|SCAAA| A | |1|SCAAA| A
0|ASACC| C | |0|ASACC| C | [0|ASACC|C
O|ACCAS| $ | [1|ASCAA| A | [1|ASCAA| A
1|ASCAA| A | [1|AASCA| A | |1|AASCA| A
1|AASCA| A | [1|AAASC| C | [1|AAASC|C
1|AAASC| C | |0|ACCAS| $ | |0|ACCAS| $
O|CA$AC|C | |0|CASAC|C | |0|CASAC|C
0|CCASA| A | |1|CAAAS| $ | [1|CAAAS| $
1|CAAAS| $ | [O|CCASA| A | |0|CCASA| A

Sx = implicit suffix array given interleave lx, Bx = BWT given the interleave Ix
Merge for two BWTs of strings “ACCAS$” and “CAAAS$”. The correct interleave is found once no change
occurs from iteration 2 to iteration 3. Sx and Bx are not actually stored in memory.

24

Construction via Merging

 Holt & McMillan (2014)
e Divide-and-conquer:
e Build BWTs for each
individual string
 Merge until only one
BWT remains
* Good for long non-
uniform strings

MSBWT
Merge 2

MSBWT
Merge 256

BWTs of Input

Input Strings

lllustration of merge for 512 strings

25

MSBWT Applications

* Instead of building a BWT of the reference
genome, build a MSBWT of the sequenced reads
e Arbitrary exact match k-mer queries
* O(k) time
* Enables fast searches/counting
 Recover an arbitrary read of length L from MSBWT
e O(L)time
 Enables extraction of user-selected reads

20

K-mer Search & Extraction

Basic utilization

Search for all reads
with a given k-mer
Extract all reads with
that k-mer or the
reverse-complement
of the k-mer

Build a consensus

« oo SCactttgaggacacagattttganatggassatggagagtggaaaTAAGACAGACACCATTCTAGCCAGTCAGATCACTTGCGTTANCACTGGAGALG s v v vvvvvvnnnnnnnssrsssssnnnnn:
« s SCactttgaggacacagattttganatggannatggagagtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACTTGOGTTAACACTGGAGAL G s s s v v vvvvvnnnnnnrsrssssssnnnn:
« s s 00 sCactttgaggacacagattttgaaatggaaaatggagagtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACTTGCGTTAACACTGGAGAtGL S s s s s v evesnnnnnsssrsssssnnnnn
«sssssCactttgaggacacagattttgaaatggaaaatggagagtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACT TGO TTAACACTGGAGATGE S s s s ssevessnnnnsssssssssnnsnn
« s+ s s sCaCtttgaggacacagattttgaaatggaaaatggagagtggaaaTAAGACANGACACCATTCTAGCCAGTCAGATCACTTGOGTTAACACTGGAGATGE S s s s s e v sasnssssssssssssnsann
« s+ 2 0 s CACtEEgAgGacacagattttgaaatggaaaatggagagtggaaaTANGACANGACACCATTCTAGCCAGTCAGATCACTTGCOTTANCACTGGAGALGES s s s svvnnssnnnusssssssssannnn
« » s s s sCaCtttgaggacacagattttgaaatggassatggagagtggaaaTANGACAMGACACCATTCTAGCCAGTCAGATCACTTOCGTTANCACTGGAGAtGES s s v vsnnvnnnnssnsssssssnnnnn,
« s 000 sCaACtttgaggacacagattttgaaatggansaatggagagtggaaaTAANGACAMGACACCATTCTAGCCAGTCAGATCACTTGCCGTTANCACTGGAGAtGE S s v v s vnvssnnnnnsnnrssssnnnnnn
« e ecaCactttgaggacacagattttganatggasnsatggagagtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACTTIGOGTTAACACTGGAGAL G s v v vvrvvsnnnnnnnnsrrsvssnnnnsn
« s+ s sQCacCtttgaggacacagattttganatggannntggagagtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACTTGOGTTAACACTGGAGAtGS s s v s s vvvvsnnnnnsrnrrssssnsnnn:
« s+ s saCaCtLtgaggacacagattttgaaatggaaaatggagagtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACT TGO TTAACACTGGAGAtGS s s s s s svvesnnnnssssssssssnnnnn
« « + SgacactttgaggacacagattttgaaatggaaaatggagagtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACTTGOGTTAACACTGGAGAT s s s s s s s savvsnnnnnnnsssssssssnnn
«« s SgacactttgaggacacagattttgaaatggaaaatggagagtggaaaTAAGACANGACACCATTCTAGCCAGTCAGATCACTTGOGTTAACACTOGAGAT c s s s s s s sasssnnssssssssssssnsssn:
« « « s JaCactttgaggacacagattttgaaatggasaatggagagtggaaaTANGACAMGACACCATTCTAGCCAGTCAGATCACTTOCGTTANCACTGGAGAtS s s s s vvssnnsnnnnnsnsssssssnnnnn,
« » s s JacactttgaggacacagattttgaaatggasasatggagagtggaaaTANGACAMGACACCATTCTAGCCAGTCAGATCACTTCCOTTANCACTGGOAGAt S s s s v vvssnnnsnnnnsssssvsssnnnnsn,
.« s s GacactttgaggacacagattttgaaatggassatggagagtggaaaTANGACAMGACACCATTCTAGCCAGTCAGATCACTTCCGTTANCACTGGAGAL S s v v v v vnnnnnnnnnnnsnrsssssnnnmn:
« s sgacactttgaggacacagattttganatggansnsatggagagtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACTTIGOGTTAACACTGGAGAL S s s v vvvrnvnnsnnnnnssrssnssnnnnn
« «StgacactttgaggacacagattttgaaatggassatggagagtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACTTGOGTTAACACTGGAGR . s s s s s s s vvvsssnnnnnsnsssssssssnn:
« «StgacactttgaggacacagattttgaaatggassatggagagtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACTTGOGTTAACACTGGAGE . s s s s s s s svvsnnnnnnnsssssssssssnn
« « stgacactttgaggacacagattttgaaatggaaaatggagagtggaaaTAAGACANGACACCATTCTAGCCAGTCAGATCACTTGCGTTAACACTGGAGAS c st s v st sevsssnssssssssssssnnsnn
. « s tgacactttgaggacacagattttgaaatggaaaatggagagtggaaaTANGACAAGACACCATTCTAGCCAGTCAGATCACTTGOGTTAACACTGGAGAS s s s s ssssssnnasssnssssssssnnann.
SttgacactttgaggacacagattttgaaatggasaatggagagtggaaaTANGACAMGACACCATTCTAGCCAGTCAGATCACTTGOGTTANCACTGOGOAG s s s s s s s s s sannnnnnnnnnnrrnnssnnnnnsn
S$ttgacactttgaggacacagattttgaaatggassatggagagtggaaaTANGACAMGACACCATTCTAGCCAGTCAGATCACTTCCGTTANCACTGGAG s s s s v srrvvnnnnnnnnnnnnssssssnnnnn:
. «ttgacactttgaggacacagattttgaaatggansaatggagagtggaasaTAAGACAMGACACCATTCTAGCCAGCTCAGATCACTTGCOTTAACACTGGARS st v v vvvrrnnssnnnnnssnrrsssnnnnnn:
« «ttgacactttgaggacacagattttganatgganantggagagtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACTTGOGTTAACACTGGAGS s s s v rvvsrnvssnnnnnsnnrsssssnnnnn:
« «ttgacactttgaggacacagattttgaaatggansaatggagagtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACTTGCGTTAACACTGGAGS S s s s s v vvssnvssnnnnnsssnvsssssnssnn:
. «ttgacactttgaggacacagattttgaaatggaaaatggagagtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACTTGOGTTAACACTGGAGS S st s v svssssvssnnnnssssssssssnnsnn
. «ttgacactttgaggacacagattttgaaatggaaaatggagagtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACTTGCGTTAACACTGOAGS s s s s svsssavsssnsnssssssssssnnnnn
ScttgacactttgaggacacagattttgaaatggaaaatggagagtggaaaTANGACAGACACCATTCTAGCCAGTCAGATCACTTGOGTTANCACTGGA . s s s s s s s s sansnnnnnssssssssssssnnn,
$cttgacactttgaggacacagattttgaaatggaaaatggagagtggaaaTANMGACAGACACCATTCTAGCCAGTCAGATCACTTGOOTTANCACTGGA . s s s s v v s s s ssssnnsnnnnnnssssassnnnns
CttgacactttgaggacacagattttgaaatggansaatggagagtggaaaTAANGACAMGACACCATTCTAGCCAGTCAGATCACTTIGCGTTANCACTGGAS s s v v v vvvssnnssnnnnnssnsssssnnnnnn:
CttgacactttgaggacacagattttgaaatggasaatggagagtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACTIGOGTTAACACTGGAS s s v v v vsrvsnssnsnnnnnssrssnssnnnns
CttgacactttgaggacacagattttgaaatggannntggagagtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACTTGOGTTAACACTGGAS s s s v vvssnvssnnnnsssnrsssssnsnne:
.CttgacactttgaggacacagattttgaaatggaaaatggagagtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACTTGCGTTAACACTGGAS c s s s v v v vssnvssnnnnssssssssssnssnn:
.CttgacactttgaggacacagattttgaaatggaaaatggagagtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACTTGOGTTAACACTGGAS s s s s v s v sssnvnssnnnssssssssssnnsnn
«ssseeestttgatgacacagattttgaaatggaaaatggagagtggaaaTANGACAAGACACCATTCTAGCCAGTCAGATCACTTGOGT TAACACTGGAGAtGECACS S s s v sssssasnnns
seseeeeeee s SgtacacagattttgaaatggaaaatggagagtggaaaTAMGACAMGACACCATTCTAGCCAGTCAGATCACTTCOGTTANCACTGGAGAtGLCACAtEOC s n s s s s s n
SatgaccctttgaggacacggattttgaaatggassatggagagtggaaaTANGACAMGACACCATTCTAGCCAGTCAGATCACTTGCGTTANCACTGGOAG « s s s s s v svssnnsnnnnnnnnssssssnnsnn,
$cttgaccctttgaggacacagattttgaaatggasattggagagtggaaaTAAMGACAMGACACCATTCTAGCCAGTCAGATCACTTGOGTTANCACTGGA . v v vvrrrssssssnnnssssnssrsssnnnnn:
sesssssssssssnsnnnnssssssssssnnnsesssss+ 39949899000 TAAGACAGACACCATTCTAGCCAGTCAGATCACTTGOOTTAACACTGGAgatgtcacattecy tcacatctgcaat!
sesssssssssssssgicacagattttgaaatggannntggagggtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACTTGCGTTAACACTGGAGAtGLCaCAt el v vrrrrrrrsrvnnnnn
sesssssssssnssssssssssssIttganatggaaaatggagngtggaaaTAAGACAAGACACCATTCTAGCCAGTCAGATCACTTGCGTTAACACTGGAGAtGLCACAttCCTAACACCCtCh s s s v a o n e
et sssssessnnnnnnsssssssssssannsssss s 5000002ATGLARATAAGACAAGACACCATTCTAGCCAGTCAGATCACTTGCGTTAACACTGGAgatgtcacattocgaacacccotcacatotgoaatt
CessssssssssssnnnnssasessessSaAtgARAAALGJAGAGLGLARATANGACANGACACCATTCTAGCCAGTCAGATCACTTGCGTTAACACTGGARALGLCACAL ECCGAACACCCCACATC s s s s u s .
« e e e s SttgaggacacagattttgaaatggasaatggagagtgtaaaTANGACAMGACACCATTCTAGCCAGTCAGATCACTTCCGTTANCACTGGAGAtGECACA s a s s s nnnnnns s s s s nnnn s
ssssssssssssnssssdCagattttgaaatggasasatggagagtggnaaTANGACAMGACACCATTCTAGCCAGTCAGATCACTTCCOTTANCACTGGAGAtGLCACAttoCgaACE . s v vvrrrsssnnnn s,
serrssssssnnnnnnsssesssttttganatggassatggagagtgganat CATTCTAGCCAGCTCAGATCACTTCCOTTACACTCGAGAtGLCacat tCCgaaCacCCt e v v v v v v nn s
« CTTGACACTTTGAGGACACAGATTTTGAAATGGAMATGGAGAGTGGAAAT CATTCY. ACACTGGAGATGTCACATTCCGAACACCCTCACATCTGCAAT

k-mer search & consensus builder
Green - k-mer query
Red - forward reads

Blue - reverse complemented reads
27

Reference-based Searches

‘ DNA-se
Given a reference genome and 1 .

region of that genome

Split reference into k-mers

Count the abundance of each k-

mer and plot

 Fast - O(k) time per k-mer

e Similar to a post-alignment
pileup " ‘

| 01 M RNA-seq

Log(count)

CAST/EIJ at Egr3, counting 40-mers overlapping by 20

28

Reference Correction

7 T L) T A v v 7

6/ : 6}
S.

1 .

2

1»

Il A

e300 8000 10000 12000 14000 16000 18000 20000 22000 24000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000
+1.4983e8 +1.4983e8

Uncorrected Corrected

<:::;149,838,013: 0 TTGATGGCTCGATGCATTCATTACCTGATCACTGCTCCCG
149,838,033: 0 TTACCTGATCACTGCTCCCGTTATGTAGGGAATGGGTACA

v

149,838,013: 18 TTGATGGCTCGATGCATTCATTACTTGATCACTGCTCCCG
149,838,033: 17 TTACTTGATCACTGCTCCCGTTATGTAGGGAATGGGTACA

CAST/EiJ DNA-seq for annotated gene /g2

29

Targeted Assembly

 De novo assembly given a k-mer target known as
the "seed” k-mer

* Extend the seed by counting the occurrence of
each possible extension

 (Generates a graph extending from the seed
 Nodes - continuous unambiguous choice of

extensions (similar to a contig)

 Edges - multiple possible choices for extension

30

Targeted Assembly Tool Demo

e (Gene
e Mitochondria

31

Practical Adaptations

e Compressed BWT is small
 FM-index is not, O(A*N) for alphabet of size A and
a BWT of length N
e [rade-off, space v. time:
 Use a sampled FM-index
B - Dbin size
e Uses O(A*N/B) values
 Requires O(B) time per lookup (for a fixed size B,
this Is just a larger constant time lookup)

32

summary

 Burrows-Wheeler Transform & FM-index
 More compressible
e Last-first relationship
e O(k) search time for arbitrary k-mer
* O(m) recovery for string of length m
« MSBWT for string collections
 Can be merged

33

