3/30/15

Lecture 17:
Suffix Arrays

Not in Book

Homework #3
will be posted tonight

Comp 555 Spring 2015

Searchlng Sequence ReV|ewl

* Searching for a string of length m in a text of
length n
* Indexing strings with trees

— Keyword tree, O(m) search
independent of number of keywords

— Suffix tree O(n) construction, O(m) search

* Suffix Arrays: a practical alternative to Suffix
tree search time: O(logn)

* Burrows-Wheeler transtorm, back to O(m)

3/30/15 Comp 790—- Genomic Sequence 2

Keyword Tre

(P>ADADP

. A tree for representing a chctlonary of terms
* Merges common prefixes into a single path
* Example:

. m i s i s s i
— mississippi root ©
— mist

— muister
. pp ()
— sister

— sippy

(@)

3/30/15 3

Keyword Tree

* Queries supported.
Does keyword, k, appear in my text?

— missstep
— sip m-i-sAs)yis-s-ip-p{i
* Searching via ., (© e ()
“Threading” 00000
* Usetul for spell e
checking, but hashing

is preferred
* Not good for how many words contain “sis”

3/30/15 4

Recall Suff1x Trees

SN compressed keyword tree of suffixes from a
given sequence

e [eaf nodes are 5 A 0. mississippi$
i s {10) 1. ississippi$
labeled by the o <% 2. ssisiopis
. . LSippg X pois 3. sissippi
starting location O U= 2 4. issippi$
. | 5. . .
of the suffix that © % o 6 :,S;E%ﬂ;
. \3\ . .
terminates there O] 'Ff’;'g
@ Jpp.'$. 9. pid
* Note that we %) 1018
now add an 1.3

end-of-string
character ‘%’

3/30/15

Sufflx Tree Features

* How many leaves in a sequence of length m?O(m)

* How many nodes?
(assume an

alphabet of k @

characters) O(m)

* Given a suffix tree
for a sequence.
How long to
determine if a
pattern of length n

$
Roig
6‘@/ .

ppi$ o

SSipp,

i$

o O

O,

Ssip |$
ippi$

@ ,”g

occurs in the sequence? O(n)

3/30/15

©COE®NOORWN—~O

mississippi$
ississippi$
ssissippi$
sissippi$
issippi$
ssippid
sippi$

ippi$

ppid

pid

10 i$
11.$

Sufflx Tree Features

* How much storage?
— Just for the edge strings O(n?)

— Trick: Rather than s A @
storing an ® %SI‘ O g
actual string at 0 Oty O
each edge, we can N O<® O
instead store 2 integer (®) ‘;‘ii$
offsets into the original O<G : ippi$
text ' ""9

associated data

3/30/15

©CO®NOORrWON—=O

mississippi$
ississippi$
ssissippi$
sissippi$
issippi$
ssippi$
sippi$

ippi$

pPpid

pi$

10 i$
11.$

* In practice the storage overhead of Suffix Trees is too
high, O(n) vertices with data and O(n) edges with

Suff1x Tree Propertles

* There exists a depth-first traversal that corresponds
to lexigraphical ordering (alphabetizing) all suffixes

1.9

10. i$

7. ippi$ s AW o

4. issippi$ O O

1. ississippid m’SS’Ss/bp,-$ & O ppi$
0. mississippi$ O O
9. p|$. "OZ

8. ppi$ OO
6. sippi$ OO O
3. sissippi$ > (Opott 5(3)
5. ssippi$)
2. ssissippi$

3/30/15 Comp 555 Spring 2015 8

Suff1x Tree Constructlon

* One could exploit this property to construct a

Suffix Tree

— Make a list of all suffixes: O(m) s

— Sort them: O(m? log m) s A s () 10. i
) i . . 7. ippi$
— Traverse the list from O s, e O 4. issippi$
.. . bpig 9 ppi 1. ississippi$
beginning to end while P ~(0) ® ss,-/.$ 0. mississippi$
threading each suffix into NO2(® O o E§$
/18‘ .
the tree created so far, when ® o A6 6 s .
. . — 3. sissippi
the suffix deviates from a O | (()=sonid 3y ssip;’ig
. S . . 1 1 H
known path in the tree, add a new (oS (3) 2 ssissippid

node with a path to a leaf. “©@

* @ Slower than the O(m) Ukkonen algorithm
given last time

3/30/15 Comp 555 Spring 2015 9

Savmg space

* Sorting however did capture important aspects of the
suffix trees structure

* A sorted list of tree-path traversals, our sorted list, can
be considered a “compressed”

version of a suffix tree. $ 2 s_(70)
* Save only the index to O LSS D ®
. . . P SSipp:
the beginning of each suffix : 2 . ; 28
,O/;g,
11,10,7,4,1,0,9,8,6, 3,5, 2 (8) QQ\?.
; . SS||$
. }ppj$ e
« Key: Argsort(text): returns the e

indices of the sorted elements of a text

3/30/15 Comp 555 Spring 2015 10

Argsort

. One of the smallest Python funct1ons yet:

def argsort(text):
return sorted(range(len(text)), cmp=lambda i,j: -1 if text[i:] < text[j:] else 1)

print argsort("mississippi$")

$ python suffixarray.py
11, 1e, 7, 4, 1, 0, 9, 8, 6, 3, 5, 2]

* What types of queries can be made from this
“compressed” form of a suffix tree

e We call this a “Suffix Array”

3/30/15 Comp 555 Spring 2015 11

Suff1x Array Querles

* Has similar capabilities to a Suffix Tree

* Does ‘sip” occur in “mississippi” ?

* How many times does “is” occur? 1%

* How many ‘i”’s? b iesiris

e What is the longest repeated s ﬁf’;‘f’é@fﬂi@
subsequence? o Do

* Given a suffix array for a sequence. 3 35
How long to determine if a R s

pattern of length n occurs in
the sequence? O(nlogm)

3/30/15 Comp 555 Spring 2015 12

Searchlng Suffix Arrays

* Separate functions for finding the first and last
occurrence of a pattern via binary search

def findFirst(pattern, text, sfa):
""" Finds the index of the first occurrence of pattern in the suffix array
hi len(text)
lo =0
while (lo < hi):
mid = (lo+hi)//2
if (pattern > text[sfa[mid]:]):
lo =mid + 1
else:
hi = mid
return lo

def findLast(pattern, text, sfa):
" Finds the index of the last occurrence of pattern in the suffix array """
len(text)
0
= len(pattern)
while (lo < hi):
mid = (lo+hi)//2
i = sfa[mid]
if (pattern >= text[i:i+m]):
lo =mid + 1
else:
hi = mid
return lo-1
3/30/15 Comp 555 Spring 2015 13

hi
lo

Augmentmg Sufflx Arrays

* Itis possible to augment a suffix array to facilitate
converting it into a suffix tree

* Longest Common Prefix, (Icp)
— Note than branches, and, hence, interior nodes if needed are

introduced immediately following = 11.$

a shared prefix of two o< O s

adjacent suffix array entries @ mississlbp$ P s ‘1‘- issippi$;

i l . ississippi
$ lep=0 P~~(0) @ SSipp; O 0. mississippi$
. _ S | i$ |
i$ lep=1 O f (il g. p|$$
" _ y " opi
ippi$ lep =1 O o (5 6 sippis
issipi$ Icp =4 oo AEE
1SS1P P _ gsii$ 3. sissippi$
ississippi$ lcp=0) - O O ssippi$
mississippi$ lecp=0 ipoiS 2. ssissippi$
* If we store the Icp along with the suffix “©

array it becomes a trivial matter to reconstruct and

traverse the corresponding Suffix Array
%/30/15 Comp 555 Spring 2015 14

Other Data Structures

* There is another trlck for fmdmg patterns in a
text string, it comes from a rather odd
remapping of the original text called a
“Burrows-Wheeler Transform” or BWT.

* BWTs have a long history. They were invented
back in the 1980s as a technique for improving
lossless compression. BWTs have recently been
rediscovered and used for DNA sequence
alignments. Most notably by the Bowtie and
BWA programs for sequence alignments.

3/30/15 Comp 555 Spring 2015 15

Strmg Rotatlon

* Before describing the BWT, we need to define
the notion of Rotating a string. The idea is
simple, a rotation of 1 moves the prefix;, to the
string’s end making it a suffix.

Rotate(“tar
Rotate(“tar]
Rotate(“tar

3/30/15

nee

neel$”, 3) 2 “heel$tar”

neel$”, 7) > “$tarheel”

1$7, 1) > “arheel$t”

Comp 555 Spring 2015 16

BWT Algorlthm

BWT (string text)
table;, = Rotate(text, 1) for i = 0..len(text)-1
sort table alphabetically
return (last column of the table)

tarheel$ $tarhedl
arheel$t arheel$t
rheel$ta eel$tarih
heel$tar el$tarhe BTW(“tarheels$”) = “Itherea$”
eel$tarh heel$tdr
el$tarhe 1$tarhde
1$tarhee rheel$ta
$tarheel tarheell$

3/30/15 Comp 555 Spring 2015 17

BWT in Python

’ Once agam thls is one of the 51mp1er algorlthms
that we've seen

def BWT(s):
create a table, with rows of all possible rotations of s
rotation = [s[i:] + s[:1] for 1 in xrange(len(s))]
sort rows alphabetically
rotation.sort()
return (last column of the table)
return "".join([r[-1] for r 1in rotation])

* Input string of length m, output a messed up
string of length m

3/30/15 Comp 555 Spring 2015 18

Inverse of BWT

. A property of a transform is that there is no
information loss and they are invertible.

inverseBWT(string s)
add s as the first column of a table strings
repeat length(s)-1 times:
sort rows of the table alphabetically
add s as the first column of the table
return (row that ends with the 'EOF' character)

1$ 1%t 1%$ta 1%$tar 1$tarh 1$tarhe 1%$tarhee
ta tar +tarh +tarhe tarhee tarheel |tarheel$
he hee heel heel$ heel$t heel$ta heelS$tar
ee eel eel$ eel$t eel$ta eel$tar eel$tarh
rh rhe rhee rheel rheel$ rheel$t rheel$ta
el el$ el$t el$ta el$tar el$tarh el$tarhe
ar arh arhe arhee arheel arheel$ arheel$t
$t S$ta S$tar $tarh $tarhe S$tarhee S$tarheel

3/30/15 Comp 555 Spring 2015 19

AQ ® 3 D® 5+~

Inverse BTW in Python

’ A shghtly more comphcated routine

def inverseBWT(s):

3/30/15

initialize table from s
table = [c for c in s]
repeat length(s) - 1 times
for j in xrange(len(s)-1):
sort rows of the table alphabetically
table.sort()
insert s as the first column
table = [s[1]+table[1] for 1 in xrange(len(s))]
return (row that ends with the 'EOS' character)
return table[[r[-1] for r in table].index('$')]

Comp 555 Spring 2015 20

BWT advantages

. A BWT is smaller than a sufflx array

— A BWT requires 2 m bits. As many bits as needed to
represent a character in the alphabet, log,(4) = 2,
times the length of the string m. With compression
you can do even better.

— A suffix array requires m log,(m) bits, as many bits as
needed to represent an index into the string, log,(m),
times the number of suffixes. Does not compress well

* A BWT is faster than a suffix array

— BWT O(n) search
— Suffix array O(n log 1)

3/30/15 Comp 555 Spring 2015 21

Next T1me

. The detaﬂs of search usmg BWT S
(get used to going backwards)

* FM indices
e Sampled FM indices

3/30/15 Comp 555 Spring 2015 22

