
3/30/15 Comp 555 Spring 2015 1

•  Searching for a string of length m in a text of
length n

•  Indexing strings with trees
–  Keyword tree, O(m) search

independent of number of keywords
–  Suffix tree O(n) construction, O(m) search

•  Suffix Arrays: a practical alternative to Suffix
tree search time: O(logn)

•  Burrows-Wheeler transform, back to O(m)

3/30/15 2 Comp	
 790–	
 Genomic	
 Sequence	

Searching Sequence Review

• A tree for representing a “dictionary” of terms
• Merges common prefixes into a single path
•  Example:

–  miss
–  mississippi
–  mist
–  mister
–  sister
–  sippy

3/30/15 3

s

root

m s i s i s s i p p i

t e r

t i s e r

p p y

• Queries supported:
Does keyword, k, appear in my text?
–  missstep
–  sip

•  Searching via
“Threading”

• Useful for spell
checking, but hashing
is preferred

• Not good for how many words contain “sis”

3/30/15 4

s

root

m s i s i s s i p p i

t e r

t i s e r

p p y

• A compressed keyword tree of suffixes from a
 given sequence

•  Leaf nodes are
labeled by the
starting location
of the suffix that
terminates there

• Note that we
now add an
end-of-string
character ‘$’

3/30/15

11

0

10

7

9

8

4

1

6

3

2

5

i
$

$

ppi$
ssippi$

mississippi$ p

i$ s

i
s

ssippi$

ippi$

0. mississippi$
1. ississippi$
2. ssissippi$
3. sissippi$
4. issippi$
5. ssippi$
6. sippi$
7. ippi$
8. ppi$
9. pi$
10. i$
11. $

• How many leaves in a sequence of length m?
• How many nodes?

(assume an
alphabet of k
characters)

• Given a suffix tree
for a sequence.
How long to
determine if a
pattern of length n
occurs in the sequence?

3/30/15

11

0

10

7

9

8

4

1

6

3

2

5

i
$

$

ppi$
ssippi$

mississippi$ p

i$
s

i
s

ssippi$

ippi$

0. mississippi$
1. ississippi$
2. ssissippi$
3. sissippi$
4. issippi$
5. ssippi$
6. sippi$
7. ippi$
8. ppi$
9. pi$
10. i$
11. $

O(m)

O(m)

O(n)

•  How much storage?
–  Just for the edge strings O(n2)
–  Trick: Rather than

storing an
actual string at
each edge, we can
instead store 2 integer
offsets into the original
text

•  In practice the storage overhead of Suffix Trees is too
 high, O(n) vertices with data and O(n) edges with
 associated data

3/30/15

11

0

10

7

9

8

4

1

6

3

2

5

i
$

$

ppi$
ssippi$

mississippi$ p

i$ s

i
s

ssippi$

ippi$

0. mississippi$
1. ississippi$
2. ssissippi$
3. sissippi$
4. issippi$
5. ssippi$
6. sippi$
7. ippi$
8. ppi$
9. pi$
10. i$
11. $

•  There exists a depth-first traversal that corresponds
to lexigraphical ordering (alphabetizing) all suffixes

3/30/15 Comp 555 Spring 2015 8

11. $
10. i$
7. ippi$
4. issippi$
1. ississippi$
0. mississippi$
9. pi$
8. ppi$
6. sippi$
3. sissippi$
5. ssippi$
2. ssissippi$

11

0

10

7

9

8

4

1

6

3

2

5

i
$

$

ppi$
ssippi$

mississippi$ p

i$ s

i
s

ssippi$

ippi$

• One could exploit this property to construct a
 Suffix Tree
–  Make a list of all suffixes: O(m)
–  Sort them: O(m2 log m)
–  Traverse the list from

beginning to end while
threading each suffix into
the tree created so far, when
the suffix deviates from a
known path in the tree, add a new
node with a path to a leaf.

• ! Slower than the O(m) Ukkonen algorithm
 given last time

3/30/15 Comp 555 Spring 2015 9

11. $
10. i$
7. ippi$
4. issippi$
1. ississippi$
0. mississippi$
9. pi$
8. ppi$
6. sippi$
3. sissippi$
5. ssippi$
2. ssissippi$

11

0

10

7

9

8

4

1

6

3

2

5

i
$

$

ppi$
ssippi$

mississippi$ p

i$ s

i
s

ssippi$

ippi$

•  Sorting however did capture important aspects of the
 suffix trees structure

•  A sorted list of tree-path traversals, our sorted list, can
 be considered a “compressed”
version of a suffix tree.

•  Save only the index to
the beginning of each suffix

3/30/15 Comp 555 Spring 2015 10

11, 10, 7, 4, 1, 0, 9, 8, 6, 3, 5, 2

11

0

10

7

9

8

4

1

6

3

2

5

i
$

$

ppi$
ssippi$

mississippi$ p

i$ s

i
s

ssippi$

ippi$

•  Key: Argsort(text): returns the
 indices of the sorted elements of a text

• One of the smallest Python functions yet:

• What types of queries can be made from this
 “compressed” form of a suffix tree

• We call this a “Suffix Array”

3/30/15 Comp 555 Spring 2015 11

def argsort(text):	
 return sorted(range(len(text)), cmp=lambda i,j: -1 if text[i:] < text[j:] else 1)	

print argsort("mississippi$")	

$ python suffixarray.py 	
[11, 10, 7, 4, 1, 0, 9, 8, 6, 3, 5, 2]	

• Has similar capabilities to a Suffix Tree
• Does ‘sip’ occur in “mississippi”?
• How many times does ‘is’ occur?
• How many ‘i’’s?
• What is the longest repeated

subsequence?
• Given a suffix array for a sequence.

How long to determine if a
pattern of length n occurs in
the sequence?

3/30/15 Comp 555 Spring 2015 12

11. $
10. i$
7. ippi$
4. issippi$
1. ississippi$
0. mississippi$
9. pi$
8. ppi$
6. sippi$
3. sissippi$
5. ssippi$
2. ssissippi$

O(n logm)

•  Separate functions for finding the first and last
 occurrence of a pattern via binary search

3/30/15 Comp 555 Spring 2015 13

def findFirst(pattern, text, sfa):	
 """ Finds the index of the first occurrence of pattern in the suffix array """	
 hi = len(text)	
 lo = 0	
 while (lo < hi):	
 mid = (lo+hi)//2	
 if (pattern > text[sfa[mid]:]):	
 lo = mid + 1	
 else:	
 hi = mid	
 return lo	

def findLast(pattern, text, sfa):	
 """ Finds the index of the last occurrence of pattern in the suffix array """	
 hi = len(text)	
 lo = 0	
 m = len(pattern)	
 while (lo < hi):	
 mid = (lo+hi)//2	
 i = sfa[mid]	
 if (pattern >= text[i:i+m]):	
 lo = mid + 1	
 else:	
 hi = mid	
 return lo-1	

•  It is possible to augment a suffix array to facilitate
 converting it into a suffix tree

•  Longest Common Prefix, (lcp)
–  Note than branches, and, hence, interior nodes if needed are

 introduced immediately following
 a shared prefix of two
 adjacent suffix array entries
 $ lcp = 0
 i$ lcp = 1
 ippi$ lcp = 1
 issipi$ lcp = 4
 ississippi$ lcp = 0
 mississippi$ lcp = 0

•  If we store the lcp along with the suffix
 array it becomes a trivial matter to reconstruct and
 traverse the corresponding Suffix Array

•  3/30/15 Comp 555 Spring 2015 14

11. $
10. i$
7. ippi$
4. issippi$
1. ississippi$
0. mississippi$
9. pi$
8. ppi$
6. sippi$
3. sissippi$
5. ssippi$
2. ssissippi$

11

0

10

7

9

8

4

1

6

3

2

5

i
$

$

ppi$
ssippi$

mississippi$ p

i$ s

i
s

ssippi$

ippi$

•  There is another trick for finding patterns in a
 text string, it comes from a rather odd
 remapping of the original text called a
 “Burrows-Wheeler Transform” or BWT.

•  BWTs have a long history. They were invented
 back in the 1980s as a technique for improving
 lossless compression. BWTs have recently been
 rediscovered and used for DNA sequence
 alignments. Most notably by the Bowtie and
 BWA programs for sequence alignments.

3/30/15 Comp 555 Spring 2015 15

•  Before describing the BWT, we need to define
 the notion of Rotating a string. The idea is
 simple, a rotation of i moves the prefixi, to the
 string’s end making it a suffix.

 Rotate(“tarheel$”, 3) " “heel$tar”
 Rotate(“tarheel$”, 7) " “$tarheel”
 Rotate(“tarheel$”, 1) " “arheel$t”

3/30/15 Comp 555 Spring 2015 16

 BWT (string text)
 tablei = Rotate(text, i) for i = 0..len(text)-1
 sort table alphabetically
 return (last column of the table)

3/30/15 Comp 555 Spring 2015 17

tarheel$	
arheel$t	
rheel$ta	
heel$tar	
eel$tarh	
el$tarhe	
l$tarhee	
$tarheel	

$tarheel	
arheel$t	
eel$tarh	
el$tarhe	
heel$tar	
l$tarhee	
rheel$ta	
tarheel$	

BTW(“tarheels$”) = “ltherea$”

• Once again, this is one of the simpler algorithms
 that we’ve seen

•  Input string of length m, output a messed up
 string of length m

3/30/15 Comp 555 Spring 2015 18

def BWT(s):	
 # create a table, with rows of all possible rotations of s	
 rotation = [s[i:] + s[:i] for i in xrange(len(s))] 	
 # sort rows alphabetically	
 rotation.sort() 	
 # return (last column of the table)	
 return "".join([r[-1] for r in rotation])	

• A property of a transform is that there is no
 information loss and they are invertible.

3/30/15 Comp 555 Spring 2015 19

inverseBWT(string s)
 add s as the first column of a table strings
 repeat length(s)-1 times:
 sort rows of the table alphabetically
 add s as the first column of the table
 return (row that ends with the 'EOF' character)

l	
t	
h	
e	
r	
e	
a	
$	

l$	
ta	
he	
ee	
rh	
el	
ar	
$t	

l$t	
tar	
hee	
eel	
rhe	
el$	
arh	
$ta	

l$ta	
tarh	
heel	
eel$	
rhee	
el$t	
arhe	
$tar	

l$tar	
tarhe	
heel$	
eel$t	
rheel	
el$ta	
arhee	
$tarh	

l$tarh	
tarhee	
heel$t	
eel$ta	
rheel$	
el$tar	
arheel	
$tarhe	

l$tarhe	
tarheel	
heel$ta	
eel$tar	
rheel$t	
el$tarh	
arheel$	
$tarhee	

l$tarhee	
tarheel$	
heel$tar	
eel$tarh	
rheel$ta	
el$tarhe	
arheel$t	
$tarheel	

• A slightly more complicated routine

3/30/15 Comp 555 Spring 2015 20

def inverseBWT(s):	
 # initialize table from s	
 table = [c for c in s]	
 # repeat length(s) - 1 times	
 for j in xrange(len(s)-1):	
 # sort rows of the table alphabetically	
 table.sort()	
 # insert s as the first column	
 table = [s[i]+table[i] for i in xrange(len(s))]	
 # return (row that ends with the 'EOS' character)	
 return table[[r[-1] for r in table].index('$')]	

• A BWT is smaller than a suffix array
–  A BWT requires 2 m bits. As many bits as needed to

 represent a character in the alphabet, log2(4) = 2,
 times the length of the string m. With compression
 you can do even better.

–  A suffix array requires m log2(m) bits, as many bits as
 needed to represent an index into the string, log2(m),
 times the number of suffixes. Does not compress well

• A BWT is faster than a suffix array
–  BWT O(n) search
–  Suffix array O(n log n)

3/30/15 Comp 555 Spring 2015 21

•  The details of search using BWT’s
(get used to going backwards)

•  FM indices
•  Sampled FM indices

3/30/15 Comp 555 Spring 2015 22

