

Lecture 17: Suffix Arrays

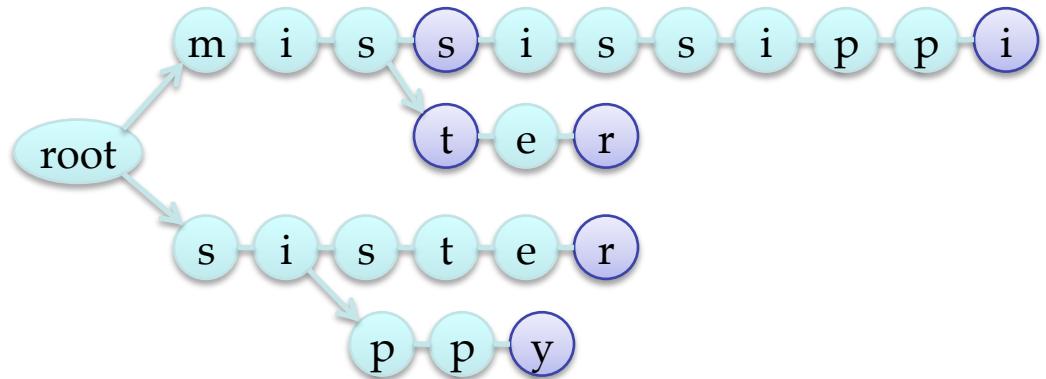
Not in Book
Homework #3
will be posted tonight

Searching Sequence Review

- Searching for a string of length m in a text of length n
- Indexing strings with trees
 - Keyword tree, $O(m)$ search independent of number of keywords
 - Suffix tree $O(n)$ construction, $O(m)$ search
- Suffix Arrays: a practical alternative to Suffix tree search time: $O(\log n)$
- Burrows-Wheeler transform, back to $O(m)$

Keyword Tree

- A tree for representing a “dictionary” of terms
- Merges common prefixes into a single path
- Example:
 - miss
 - mississippi
 - mist
 - mister
 - sister
 - sippy



Keyword Tree

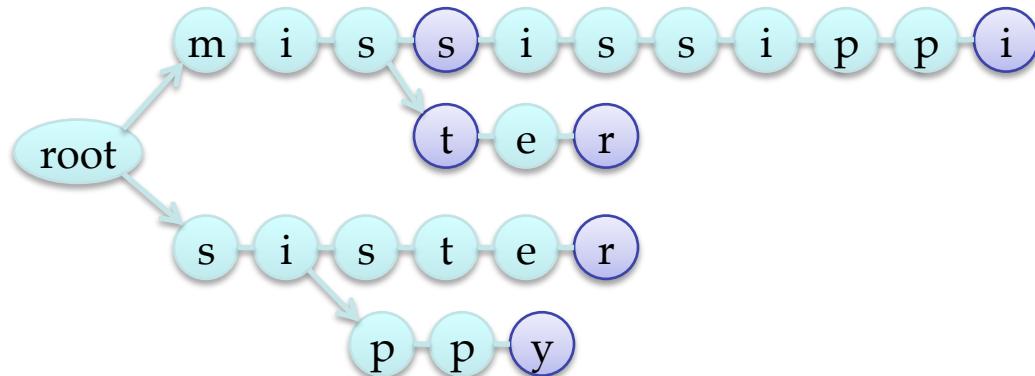
- Queries supported:

Does keyword, k , appear in my text?

- missstep
 - sip

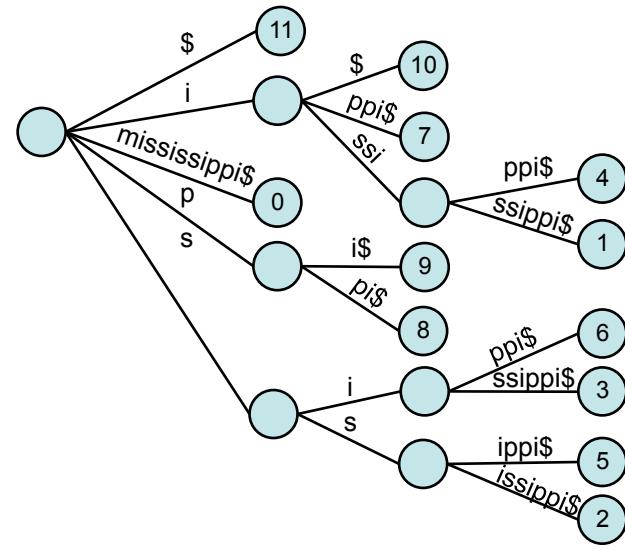
- Searching via
“Threading”

- Useful for spell
checking, but hashing
is preferred
- Not good for how many words contain “sis”



Recall Suffix Trees

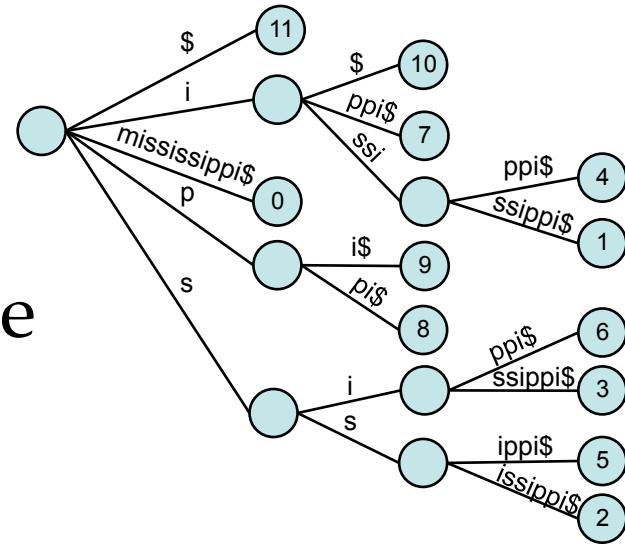
- A compressed keyword tree of suffixes from a given sequence
- Leaf nodes are labeled by the starting location of the suffix that terminates there
- Note that we now add an end-of-string character '\$'



0. mississippi\$
1. ississippi\$
2. ssissippi\$
3. sissippi\$
4. issippi\$
5. ssippi\$
6. sippi\$
- 7.ippi\$
8. ppi\$
9. pi\$
10. i\$
11. \$

Suffix Tree Features

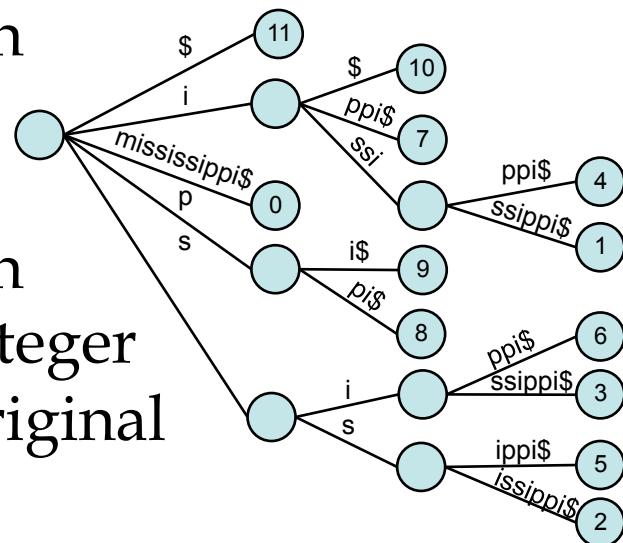
- How many leaves in a sequence of length m ? $O(m)$
- How many nodes?
(assume an alphabet of k characters) $O(m)$
- Given a suffix tree for a sequence.
How long to determine if a pattern of length n occurs in the sequence? $O(n)$



0. mississippi\$
1. ississippi\$
2. ssissippi\$
3. sissippi\$
4. issippi\$
5. ssippi\$
6. sippi\$
- 7.ippi\$
8. ppi\$
9. pi\$
10. i\$
11. \$

Suffix Tree Features

- How much storage?
 - Just for the edge strings $O(n^2)$
 - Trick: Rather than storing an actual string at each edge, we can instead store 2 integer offsets into the original text



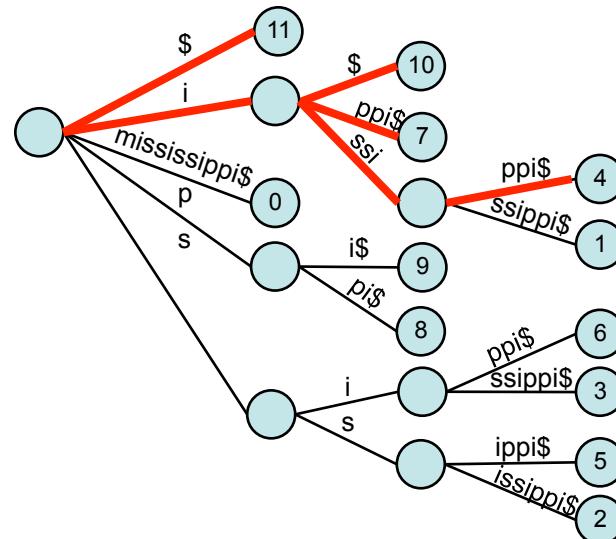
0. mississippi\$
1. ississippi\$
2. ssissippi\$
3. sissippi\$
4. issippi\$
5. ssippi\$
6. sippi\$
- 7.ippi\$
8. ppi\$
9. pi\$
10. i\$
11. \$

- In practice the storage overhead of Suffix Trees is too high, $O(n)$ vertices with data and $O(n)$ edges with associated data

Suffix Tree Properties

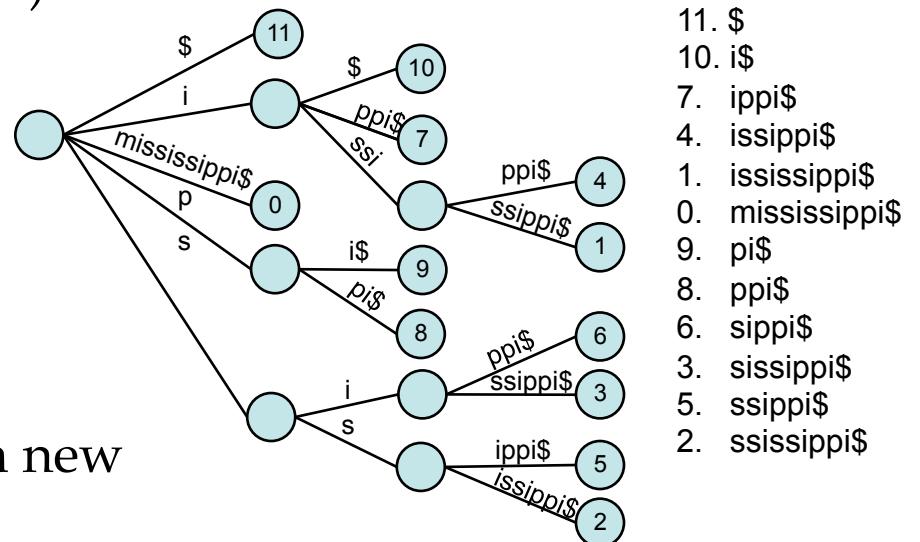
- There exists a depth-first traversal that corresponds to lexicographical ordering (alphabetizing) all suffixes

11. \$
10. i\$
- 7.ippi\$
4. issippi\$
1. ississippi\$
0. mississippi\$
9. pi\$
8. ppi\$
6. sippi\$
3. sissippi\$
5. ssippi\$
2. ssissippi\$



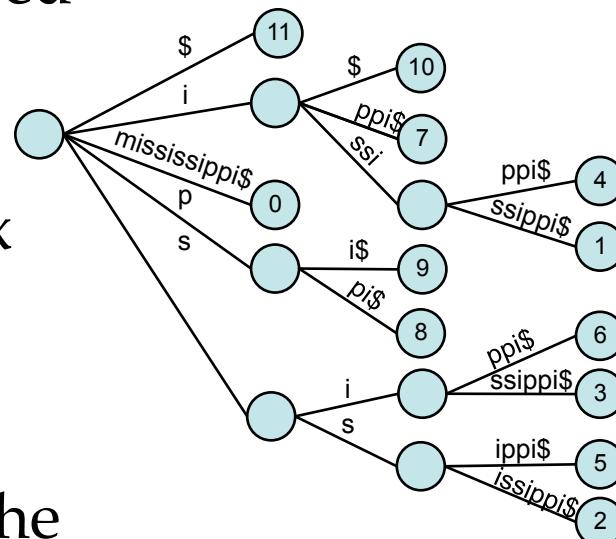
Suffix Tree Construction

- One could exploit this property to construct a Suffix Tree
 - Make a list of all suffixes: $O(m)$
 - Sort them: $O(m^2 \log m)$
 - Traverse the list from beginning to end while threading each suffix into the tree created so far, when the suffix deviates from a known path in the tree, add a new node with a path to a leaf.
- ☹ Slower than the $O(m)$ Ukkonen algorithm given last time



Saving space

- Sorting however did capture important aspects of the suffix trees structure
- A sorted list of tree-path traversals, our sorted list, can be considered a “compressed” version of a suffix tree.
- Save only the index to the beginning of each suffix
11, 10, 7, 4, 1, 0, 9, 8, 6, 3, 5, 2



- Key: `Argsort(text)`: returns the indices of the sorted elements of a text

Argsort

- One of the smallest Python functions yet:

```
def argsort(text):
    return sorted(range(len(text)), cmp=lambda i,j: -1 if text[i:] < text[j:] else 1)

print argsort("mississippi$")
```

```
$ python suffixarray.py
[11, 10, 7, 4, 1, 0, 9, 8, 6, 3, 5, 2]
```

- What types of queries can be made from this “compressed” form of a suffix tree
- We call this a “Suffix Array”

Suffix Array Queries

- Has similar capabilities to a Suffix Tree
- Does 'sip' occur in "mississippi"?
- How many times does 'is' occur?
- How many 'i's?
- What is the longest repeated subsequence?
- Given a *suffix array* for a sequence. How long to determine if a pattern of length n occurs in the sequence? $O(n \log m)$

11. \$
10. i\$
7.ippi\$
4.issippi\$
1.ississippi\$
0.mississippi\$
9.pi\$
8.ppi\$
6.sippi\$
3.sissippi\$
5.ssippi\$
2.ssissippi\$

Searching Suffix Arrays

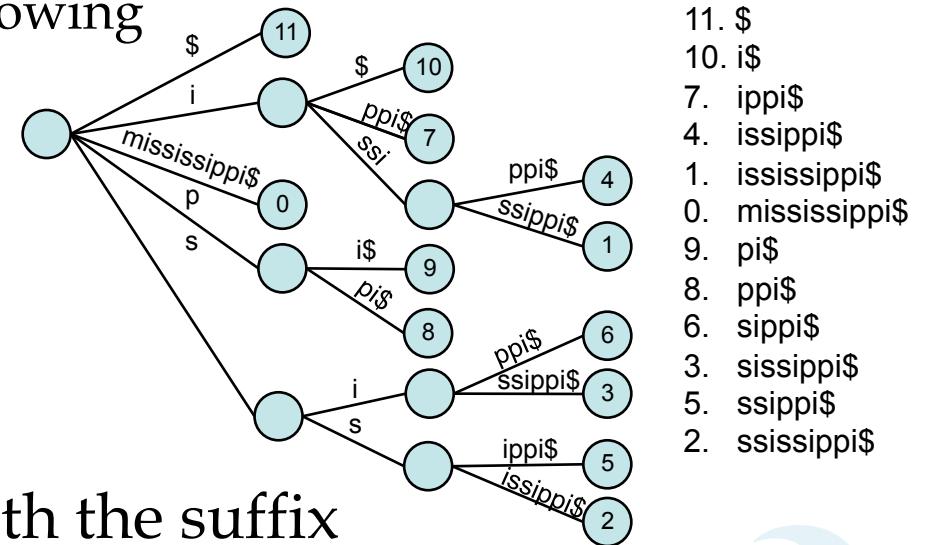
- Separate functions for finding the first and last occurrence of a pattern via binary search

```
def findFirst(pattern, text, sfa):  
    """ Finds the index of the first occurrence of pattern in the suffix array """  
    hi = len(text)  
    lo = 0  
    while (lo < hi):  
        mid = (lo+hi)//2  
        if (pattern > text[sfa[mid]:]):  
            lo = mid + 1  
        else:  
            hi = mid  
    return lo  
  
def findLast(pattern, text, sfa):  
    """ Finds the index of the last occurrence of pattern in the suffix array """  
    hi = len(text)  
    lo = 0  
    m = len(pattern)  
    while (lo < hi):  
        mid = (lo+hi)//2  
        i = sfa[mid]  
        if (pattern >= text[i:i+m]):  
            lo = mid + 1  
        else:  
            hi = mid  
    return lo-1
```


Augmenting Suffix Arrays

- It is possible to augment a suffix array to facilitate converting it into a suffix tree
- Longest Common Prefix, (lcp)
 - Note than branches, and, hence, interior nodes if needed are introduced immediately following a shared prefix of two adjacent suffix array entries

\$	$\text{lcp} = 0$
i\$	$\text{lcp} = 1$
ippi\$	$\text{lcp} = 1$
issipi\$	$\text{lcp} = 4$
ississippi\$	$\text{lcp} = 0$
mississippi\$	$\text{lcp} = 0$



- If we store the lcp along with the suffix array it becomes a trivial matter to reconstruct and traverse the corresponding Suffix Array

Other Data Structures

- There is another trick for finding patterns in a text string, it comes from a rather odd remapping of the original text called a “Burrows-Wheeler Transform” or BWT.
- BWTs have a long history. They were invented back in the 1980s as a technique for improving lossless compression. BWTs have recently been rediscovered and used for DNA sequence alignments. Most notably by the [Bowtie](#) and [BWA](#) programs for sequence alignments.

String Rotation

- Before describing the BWT, we need to define the notion of Rotating a string. The idea is simple, a rotation of i moves the prefix_i, to the string's end making it a suffix.

Rotate("tarheel\$", 3) \rightarrow "heel\$tar"

Rotate("tarheel\$", 7) \rightarrow "\$tarheel"

Rotate("tarheel\$", 1) \rightarrow "arheel\$t"

BWT Algorithm

BWT (string text)

table_i = Rotate(text, i) for i = 0..len(text)-1
sort table alphabetically
return (last column of the table)

tarheel\$
arheel\$t
rheel\$ta
heel\$tar
eel\$tarh
el\$tarhe
l\$tarhee
\$tarheel

\$tarheel
arheel\$t
eel\$tarh
el\$tarhe
heel\$tar
l\$tarhee
rheel\$ta
tarheel\$

BTW("tarheels\$") = "Itherea\$"

BWT in Python

- Once again, this is one of the simpler algorithms that we've seen

```
def BWT(s):  
    # create a table, with rows of all possible rotations of s  
    rotation = [s[i:] + s[:i] for i in xrange(len(s))]  
    # sort rows alphabetically  
    rotation.sort()  
    # return (last column of the table)  
    return "".join([r[-1] for r in rotation])
```

- Input string of length m , output a messed up string of length m

Inverse of BWT

- A property of a transform is that there is no information loss and they are invertible.

inverseBWT(string s)

 add s as the first column of a table strings

 repeat $\text{length}(s)-1$ times:

 sort rows of the table alphabetically

 add s as the first column of the table

 return (row that ends with the 'EOF' character)

l	l\$	l\$t	l\$ta	l\$tar	l\$tarh	l\$tarhe	l\$tarhee
t	ta	tar	tarh	tarhe	tarhee	tarheel	tarheel\$
h	he	hee	heel	heel\$	heel\$t	heel\$ta	heel\$tar
e	ee	eel	eel\$	eel\$t	eel\$ta	eel\$tar	eel\$tarh
r	rh	rhe	rhee	rheel	rheel\$	rheel\$t	rheel\$ta
e	el	el\$	el\$t	el\$ta	el\$tar	el\$tarh	el\$tarhe
a	ar	arh	arhe	arhee	arheel	arheel\$	arheel\$t
\$	\$t	\$ta	\$tar	\$tarh	\$tarhe	\$tarhee	\$tarheel

Inverse BTW in Python

- A slightly more complicated routine

```
def inverseBWT(s):  
    # initialize table from s  
    table = [c for c in s]  
    # repeat length(s) - 1 times  
    for j in xrange(len(s)-1):  
        # sort rows of the table alphabetically  
        table.sort()  
        # insert s as the first column  
        table = [s[i]+table[i] for i in xrange(len(s))]  
    # return (row that ends with the 'EOS' character)  
    return table[[r[-1] for r in table].index('$')]
```


BWT advantages

- A BWT is smaller than a suffix array
 - A BWT requires $2 m$ bits. As many bits as needed to represent a character in the alphabet, $\log_2(4) = 2$, times the length of the string m . With compression you can do even better.
 - A suffix array requires $m \log_2(m)$ bits, as many bits as needed to represent an index into the string, $\log_2(m)$, times the number of suffixes. Does not compress well
- A BWT is faster than a suffix array
 - BWT $O(n)$ search
 - Suffix array $O(n \log n)$

Next Time

- The details of search using BWT's (get used to going backwards)
- FM indices
- Sampled FM indices

