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• DNA sequences 
–  “OS” that controls 

living biological systems 
–  Sections of DNA (Genes) 

encode proteins, like  
programs 

–  Triplets of nucleotides 
(codons) encode the  
amino-acid sequences,  
as well as the stop codes,  
used to assemble proteins 

–  Complications in going from DNA ! Protein:  
introns, RNA editing prior to translation, post-
translational modifications 
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•  Proteins are the “machinery” or “hardware” 
–  Compose the cellular structures 
–  Control the biochemical reactions in cells 
–  Regulate and trigger the chain reactions (metabolic 

pathways) that result in the cell’s life cycle 
–  Determine which parts of the DNA “code” are 

activated, executed, and when 

•  Like DNA, proteins are long molecular chains 
–  Sequences of 20 amino acid residues rather than 4 

nucleic acids 
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Amino Acid 3-Letter 
Code 

1-Letter  
Code 

Molecular  
Weight 

Alanine Ala A 89.09 

Cysteine Cys C 121.16 

Aspartate Asp D 133.10 

Glutamate Glu E 147.13 

Phenylalanine Phe F 165.19 

Glycine Gly G 75.07 

Histidine His H 155.16 

Isoleucine Ile I 131.18 

Lysine Lys K 146.19 

Leucine Leu L 131.18 

Amino Acid 3-Letter 
Code 

1-Letter  
Code 

Molecular  
Weight 

Methionine Met M 149.21 

Asparagine Asn N 132.12 

Proline Pro P 115.13 

Glutamine Gln Q 146.15 

Arginine Arg R 174.20 

Serine Ser S 105.09 

Threonine The T 119.12 

Valine Val V 117.15 

Tryptophan Trp W 204.23 

Tyrosine Tyr Y 181.19 

•  Proteins are made from 20 amino acids 
•  Peptide bonds join amino acids into long chains 
•  100’s to 1000’s of amino acid residues long 
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• Amino acids are joined 
by peptide bonds into 
long chains 

•  These chains “fold” 
into proteins 

•  Interact with other 
proteins and other large 
molecules 

N-terminus C-terminus 
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•  Protein sequences are be read using one of: 
–  “Edman degradation” – removes one terminal amino 

acid and determine its identity by its molecular 
weight (in Daltons). However, the process degrades 
after only a few reads. Then use “proteases” to cut 
proteins into short “peptide chains” at specific 
residue pairs 

–  Cut protein with “proteases” and measure the 
resulting peptide masses using Mass Spectrometry  
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•  Purify a sample 
•  Break into pieces 

–  Proteases cleave 
proteins into  
smaller “peptide” 
chains 

•  Read fragments 
–  Edman degradation for short peptide sequences 
–  Mass spectrometry measures mass/charge 
–  The “Hard” part 

•  Reassemble 
–  Relatively easy 
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•  Peptides tend to fragment along the backbone. 
•  But the fragments can lose neutral chemical groups like 

H, NH3, and H2O. 
•  This impacts the mass measurements 

H...-HN-CH-CO    .  .   .   NH-CH-CO-NH-CH-CO-…OH 

Ri-1 Ri Ri+1 

H+ 

Prefix Fragment Suffix Fragment 

Collision Induced Dissociation 
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•  First, proteins are isolated and sometimes purified 
•  Broken into peptides using proteases, e.g. trypsin. 
•  A Tandem Mass Spectrometer further breaks the 

peptides down into fragment ions and measures the 
mass of each piece. 

•  Mass Spectrometer accelerates the fragmented ions; 
using their charge. We expect heavier ions accelerate 
slower than lighter ones. 

• Mass Spectrometer measure mass/charge ratio of 
an ion. 
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NH2- -CO2H 
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Peptide 

Mass (D)    57  +  97  + 147 + 114  = 415 

Peptide 

Mass (D)    57  +  97  + 147 + 114 – 18 = 397 

without 
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Reconstruct peptide from the set of masses of fragment ions 

                                   (mass-spectrum) 
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G V D L K 

mass 
0 

57 Da = ‘G’  99 Da = ‘V’ 
L K   D V G 

•  The peaks in the mass spectrum: 
–  Prefix  
–  Fragments with neutral losses (-H2O, -NH3) 
–  Noise and missing peaks. 

and Suffix Fragments. 

D 

H
2O
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G V D L K 

mass 
0 

In
te
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ity

 

mass 
0 

MS/MS 
Peptide 
Identification:  
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De Novo 

AVGELTK 

Database 
Search 

Database of all peptides = 20n 

AAAAAAAA,AAAAAAAC,AAAAAAAD,AAAAAAAE,
AAAAAAAG,AAAAAAAF,AAAAAAAH,AAAAAAI, 

AVGELTI, AVGELTK , AVGELTL, AVGELTM, 

YYYYYYYS,YYYYYYYT,YYYYYYYV,YYYYYYYY 

Database of 
known peptides 

MDERHILNM,   KLQWVCSDL, 
PTYWASDL,   ENQIKRSACVM, 
TLACHGGEM,  NGALPQWRT, 
HLLERTKMNVV,   GGPASSDA,   
GGLITGMQSD,  MQPLMNWE, 

ALKIIMNVRT,  AVGELTK, 
HEWAILF,  GHNLWAMNAC, 

GVFGSVLRA,  EKLNKAATYIN.. 

Database of 
known peptides 

MDERHILNM,   KLQWVCSDL, 
PTYWASDL,   ENQIKRSACVM, 
TLACHGGEM,  NGALPQWRT, 
HLLERTKMNVV,   GGPASSDA,   
GGLITGMQSD,  MQPLMNWE, 
ALKIIMNVRT,  AVGELTK,  
HEWAILF,  GHNLWAMNAC, 

GVFGSVLRA,  EKLNKAATYIN.. 

Mass, Score 
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• Database of all possible n-peptide chains is 
huge ≈ O(20n) . 

• Database of all known peptides is much 
smaller ≈ O(108). 

• However, de novo algorithms can be much 
faster, even though their search space is much 
larger! 

• A database search scans all peptides in the 
database of all known peptides search space 
to find best one. 

• De novo eliminates the need to scan database 
of all peptides by modeling the problem as a 
graph search. 
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b 
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a 

S E    Q   U    E    N    C    E 
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  S   E    Q   U   E    N    C   E 

a is an ion type shift in b 
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y 

 E   C    N    E    U   Q    E  S 
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noise 
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•  Some masses correspond to fragment ions, 

others are just random noise 

•  Known ion types Δ={δ1, δ2,…, δk} allow us 

distinguish fragment ions from noise 

• We can learn ion types δi and their 

probabilities qi by analyzing a large test 

sample of annotated spectra.  
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•  Δ={δ1, δ2,…, δk}   

•  Ion types  

                      {b, b-NH3, b-H2O}  

  correspond to      

                      Δ={0, 17, 18}   
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•  One measure of the match between two spectra is the 
number of mass peaks that they share  
(Shared Peak Count or SPC) 

•  In practice a weighted SPC that reflects intensities of the 

various peaks is used 

•  Match between experimental and theoretical spectra is 
defined similarly  
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Goal: Find a peptide with maximal match between an 
experimental and theoretical spectrum. 

Input: 
–  S: experimental spectrum 
– Δ: set of possible ion types 
– m: parent mass 

Output:  
– P: peptide with mass m, whose theoretical 

spectrum best matches the experimental S 
spectrum 
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•  Masses of all potential N-terminal peptides	



•  Vertices are generated by reverse shifts corresponding to ion types 	



                                         Δ={δ1, δ2,…, δk}	



•  Every N-terminal peptide can generate up to k  ions	



                                         m-δ1, m-δ2, …, m-δk 	



•  Every mass s in an MS/MS spectrum generates k vertices 	


                                 V(s) = {s+δ1, s+δ2, …, s+δk}	



    corresponding to potential N-terminal peptides	



•  Add initial (0 mass) and terminal (total mass) vertices 	



•  Vertices of the spectrum graph:	


            {initial vertex}∪V(s1) ∪V(s2) ∪... ∪V(sm) ∪{terminal vertex}	
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Shift in H2O+NH3 

Shift in H2O 
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• Add an edge between any two vertices with a 
mass difference corresponding to the molecular 
weight of an amino acid, A, and label it. 

•  Considers all pairs of nodes, 2 + k*nC2 
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•  Paths in the labeled graph spell out amino acid 
sequences 

•  There may be many paths, how do we find the 
best/correct one? 

• We apply a scoring function to evaluate paths 
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•  p(P,S) = probability that peptide P produces 
spectrum S= {s1,s2,…sq} 

•  p(P, s) = the probability that peptide P generates 
a peak s 

•  Scoring = computing probabilities 

•  p(P,S) = ΠsєS p(P, s)  
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•  Tandem mass spectrometry is characterized by a 
set of ion types {δ1,δ2,..,δk} and  their 
probabilities {q1,...,qk} 

•  δi-ions of a partial peptide are produced 
independently with probabilities qi 
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• A peptide has all k peaks with probability            

•  and  no peaks with probability 

• A peptide also produces a “random noise” with 
uniform probability qR in any position. 
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•  For a position t that represents a vertex 
generated by an ion type dj : 

                     qj,  if peak is generated at t 

     p(P,st) =  

                         1-qj ,  otherwise 
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•  For a position t that is not associated with an ion 
type: 

                             qR ,  if peak is generated at t 
      pR(P,st) =  
                             1-qR ,  otherwise 

•  qR = the probability of a noisy peak that does not 
correspond to any ion type 
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•  For a given MS/MS spectrum S, find a peptide 
P’ maximizing p(P,S) over all peptides P: 

•  Peptides = paths in the spectrum graph 

•  P’ = the optimal path in the spectrum graph 
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•  Incorporates premiums for observed ions and 
penalties for missing ions. 

•  Example: for k=4, assume that for a partial 
peptide P’ we only see ions δ1,δ2,δ4. �

The score is calculated as: 
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•  T-  set of all positions.  

•  Ti={t δ1,, t δ2,..., ,t δk,}- set of positions that 
represent ions of partial peptides Pi. 

• A peak at position tδj  is generated with 
probability qj. 

•  R=T- (∪Ti ) - set of positions that are not 
associated with any partial peptides (noise).  
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•  For a position t δj ∈ Ti the probability p(t, P,S) that 
peptide P produces a peak  at position t. 

•  Similarly, for t∈R, the probability that P produces a 
random noise peak at t is: 
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•  For a peptide P with n amino acids, the score for 
the whole peptides is expressed by the following 
ratio test: 
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De Novo 

AVGELTK 

Database 
Search 

Database of 
known peptides 

MDERHILNM,   KLQWVCSDL, 
PTYWASDL,   ENQIKRSACVM, 
TLACHGGEM,  NGALPQWRT, 
HLLERTKMNVV,   GGPASSDA,   
GGLITGMQSD,  MQPLMNWE, 

ALKIIMNVRT,  AVGELTK, 
HEWAILF,  GHNLWAMNAC, 

GVFGSVLRA,  EKLNKAATYIN.. 

Database of 
known peptides 

MDERHILNM,   KLQWVCSDL, 
PTYWASDL,   ENQIKRSACVM, 
TLACHGGEM,  NGALPQWRT, 
HLLERTKMNVV,   GGPASSDA,   
GGLITGMQSD,  MQPLMNWE, 
ALKIIMNVRT,  AVGELTK,  
HEWAILF,  GHNLWAMNAC, 

GVFGSVLRA,  EKLNKAATYIN.. 
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Goal: Find a peptide from a database whose theoretical 
spectrum best matches the experimental. 

Input: 
–  S: experimental spectrum 
–  database of peptides 
– Δ: set of possible ion types 
– m: parent mass 

Output:  
– A peptide of mass m from the database whose 

theoretical spectrum matches the experimental S 
spectrum the best 
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Database search in mass-spectrometry has been very 
successful in identification of already known proteins. 

Experimental spectrum can be compared with theoretical 
spectra of database peptides to find  the best fit. 

SEQUEST  (Yates et al., 1995) 

But reliable algorithms for identification of new protein forms  
via mutation is a much more difficult problem. 
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•  Virtual Database Approach 
•  Yates et al.,1995: an exhaustive search in  a virtual 

database of all modified peptides. 

•  Exhaustive search  leads to a large combinatorial 
problem, even for a small  set of modifications types. 

•  Problem (Yates et al.,1995).  Extends the database  
using a large virtual set of modifications. 
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•      YFDSTDYNMAK 

•  25=32 possibilities, with 2 types of 
modifications!  

Phosphorylation? 

Oxidation? 

•  For each peptide, 
generate all 
modifications. 

•  Score each 
modification. 
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Very similar peptides may have very different 
spectra! 

Goal: Define a  notion of spectral similarity that 
correlates well with the sequence similarity. 

If peptides are a few mutations/modifications 
apart, the spectral similarity between their 
spectra should be high. 
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Shared peaks count (SPC): intuitive measure of 
spectral  similarity. 

Problem: SPC diminishes very quickly as the 
number of mutations increases. 

Only a small portion of correlations between the  
spectra of mutated peptides is captured by SPC. 
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S(PRTEIN)  = {98, 133, 246, 254, 355, 375, 476, 484, 597, 632} 

S(PRTEYN) = {98, 133, 254, 296, 355, 425, 484, 526, 647, 682} 

S(PGTEYN) = {98, 133, 155, 256, 296, 385, 425, 526, 548, 583} 

no mutations 
SPC=10 

1 mutation 
SPC=5 

2 mutations 
SPC=2 
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€ 

S2 −S1 = {s2 − s1:s1∈S1,s2∈S2}
Number of pairs s1∈S1,s2∈S2with s2 − s1 = x :

(S2 −S1)(x)
The shared peaks count (SPC peak):

(S2 −S1)(0)
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Elements of S2       S1 represented as elements of a difference matrix. The 
elements with multiplicity >2 are colored; the elements with multiplicity =2 
are circled. The SPC takes into account only the red entries 
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S = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} 
Which of the spectra   

S’ = {10, 20, 30, 40, 50, 55, 65, 75,85, 95}  
or                                 

S” = {10, 15, 30, 35, 50, 55, 70, 75, 90, 95}  
fits the  spectrum S the best? 

SPC:  both S’ and S” have 5 peaks in common with S. 
Spectral Convolution: reveals the peaks at 0 and 5. 
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S     S’ 

S     S’’ 
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Spectral convolution does not reveal that spectra S 
and S’ are similar, while spectra S and S” are 
not. 

Clumps of shared peaks: the matching positions 
in S’ come in clumps while the matching 
positions in S” don't. 

This important property  was not captured by 
spectral convolution. 
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A = {a1 < … < an} : an ordered set of natural 
numbers.  

A shift (i,Δ) is characterized by two parameters,  
the starting position (i) and the shift distance (Δ). 
The shift (i,Δ) transforms        
                             {a1, …., an} 
into                    
                 {a1, ….,ai-1,ai+Δ,…,an+ Δ } 
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The shift (i,Δ) transforms       {a1, …., an} 
into                   {a1, ….,ai-1,ai+Δ,…,an+ Δ } 

e.g. 
10  20  30  40  50  60  70  80  90 

10  20  30  35  45  55  65  75  85 

10  20  30  35  45  55  62  72  82 

shift  (4, -5) 

  shift (7,-3) 
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•  Find a series of k shifts that make the sets  
A={a1, …., an} and  B={b1,….,bn} 

    as similar as possible. 

•  Provides a notion of “k-similarity” between sets 

•  D(k) - the maximum number of elements in 
common between sets after k shifts (Like SPC). 
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• Quantize (bin) the mass dimension  
•  Convert spectrum to a 0-1 string with 1s 

corresponding to the positions of the peaks. 
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•  A modification with positive offset corresponds to 
inserting a block of 0s 

•  A modification with negative offset corresponds to 
deleting a block of 0s 

•  Comparison of theoretical and experimental spectra 
(represented as 0-1 strings) corresponds to a (somewhat 
unusual)  edit distance/alignment  problem where 
elementary edit operations are insertions/deletions of 
blocks of 0s 

•  Use sequence alignment algorithms! 
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• Manhattan-like graph with different alphabet 
and scoring. 

• Movement can be diagonal (matching masses) or  
horizontal/vertical (insertions/deletions 
corresponding to PTMs). 

• At most  k horizontal/vertical  moves. 
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A={a1, …., an} and  B={b1,…., bn} 
    Spectral product A⊗B: two-dimensional matrix with nm 

1s corresponding to all pairs of  
    indices (ai,bj) and remaining  
    elements being 0s.   

         10  20  30  40  50 55  65   75  85  95 

δ 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

SPC: the number of 1s at 
the main diagonal. 

δ-shifted SPC: the number 
of 1s on the diagonal (i,i+ δ) 
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k-similarity between spectra:  the maximum number of 1s 
on a path through this graph that uses at most k+1 
diagonals. 

k-optimal spectral 
 alignment = a path. 

The spectral alignment 
allows one to detect 
more and more subtle  
similarities between 
spectra by increasing k. 
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SPC reveals only 
D(0)=3 matching 
peaks. 

Spectral Alignment 
reveals more 
hidden similarities 
between spectra: 
D(1)=5 and D(2)=8 
and detects 
corresponding 
mutations. 
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Black line represent  the path for k=0  
Red lines represent the path for  k=1  
Blue lines (right) represents the path for k=2 
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 The spectral convolution considers diagonals 
separately without combining them into feasible 
mutation scenarios. 

D(1) =10       shift function score = 10    D(1) =6 

         10  20  30  40  50 55  65   75  85  95 
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       10 15   30 35     50 55    70 75   90 95 

10 
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δ δ 
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Dij(k):  the maximum number of 1s on a path to 
(ai,bj ) that uses at most k+1 diagonals. 

Running time: O(n4 k) 
€ 

Dij (k) = max
( i ', j ')< ( i, j )

Di ' j ' (k) +1, if (i' , j' ) ~ (i, j)
Di ' j ' (k −1) +1, otherwise

⎧ 
⎨ 
⎩ 
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diag(i,j) – the position 
of previous 1 on the 
same diagonal as (i,j) 
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Running time: O(n2 k)  



3/17/15 Comp 555   Spring 2015 76 

Spectra are combinations of an  increasing (N-
terminal ions)  and a decreasing (C-terminal 
ions) number series. 

These series form  two diagonals in the spectral 
product, the main diagonal and the 
perpendicular diagonal. 

 The  described algorithm  deals with the main 
diagonal only. 
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•  Simultaneous analysis of N- and C-terminal ions 

•  Taking into account the intensities and charges 

• Analysis of minor ions 


