The UNIVERSITY of NORTH CAROLINA atCHAPEL HILL

Comp 411 Computer Organization
Spring 2014

Problem Set #6
Issued Monday, 4/14/14; Due Tuesday, 4/22/14
(hand in your work at start of class)

Note: You may use additional sheets of paper, but please enter your answers in the space provided in
this document.

Problem 1. “Out of Control” (40 points)

Refer to the following picture of a MIPS implementation and answer the question below.

COMP 411

P
020000040
Dmmwsa_l

PCSEL—\ 6 5 4

£<31:28>.250>00
JJ,T \ BT
3 2 1 0/
= pc_|00]
4 Instruction
Memory

[4]

D

miniMIPS

\n_|_,L

le: <5215 JRt: 016>
WASEL
J:<25:0]
Rigows) | P4 Register R2
Ao wa File
-3 B RD1 RD2 WE|<— WERF
RESET Imm: <15:0>
SEX
IRQZ N v C i EESE:IW
|l \l l L \l shamt:<10:6>
i 6"
Control Logic v 4 . -
L, PCSEL ‘F,u S T‘ !
N WASEL BT
N SEXT A]
N—> BSEL ALUFN ALU WO Rawe—"""
N WDSEL
N ALUFN Data Memory
——" NY CZ Adr RD
N WERF
N ASEL
PC+
|
WDSEL

Fill in the missing entries of the Control Logic in the table below, based on the data path shown above.
Hint: All of the information you need to answer this question can be found in the slides from the
lecture on building a computer).

Opcode | PCSEL | WASEL | SEXT | BSEL | ASEL | WDSEL ALUFN Wr | WERF
Sub Bool Shft Math
sub 0 0 X 0 0 1 1 [XX|0|1] 0 1
Xor 0 0 X 0 0 1 X |10 o(0 | 0 1
addi 0 1 1 1 0 1 0 | XX | 071 0 1
sll 0 0 X 0 1 1 X100 (1 0] o0 1
andi 0 1 1 1 0 1 X100 |0 (O] 0 1
lw 0 1 1 1 0 2 O XX| 0|1 0 1
sw 0 X 1 1 0 X X | XX X?2X?] 1 0
] 2? X X X? | X? X X[XX|X|X] 0 0
jal 37 2 X X? | X? 0? [X[XX|X[|X] o0 1
lui 0 1 1? 1 2 1 X]1o00/1T 0] 0O 1

Joe Puccio
1

Joe Puccio
1

Joe Puccio
0

Joe Puccio
1

Joe Puccio
1

Joe Puccio
0

Joe Puccio
0

Joe Puccio
1

Joe Puccio
1

Joe Puccio
0

Joe Puccio
0

Joe Puccio
0

Joe Puccio
2?

Joe Puccio
3?

Joe Puccio
1

Joe Puccio
1

Joe Puccio
X

Joe Puccio
X

Joe Puccio
2

Joe Puccio
1

Joe Puccio
X

Joe Puccio
1

Joe Puccio
1

Joe Puccio
1

Joe Puccio
1

Joe Puccio
X

Joe Puccio
X

Joe Puccio
1?

Joe Puccio
0

Joe Puccio
X?

Joe Puccio
X?

Joe Puccio
1

Joe Puccio
1

Joe Puccio
1

Joe Puccio
1

Joe Puccio
1

Joe Puccio
X?

Joe Puccio
X?

Joe Puccio
0

Joe Puccio
0

Joe Puccio
1

Joe Puccio
0

Joe Puccio
0

Joe Puccio
0

Joe Puccio
2

Joe Puccio
1

Joe Puccio
1

Joe Puccio
1

Joe Puccio
X

Joe Puccio
1

Joe Puccio
X

Joe Puccio
0?

Joe Puccio
X

Joe Puccio
10

Joe Puccio
0

Joe Puccio
0

Joe Puccio
X

Joe Puccio
00

Joe Puccio
1

Joe Puccio
0

Joe Puccio
0

Joe Puccio
XX

Joe Puccio

Joe Puccio

Joe Puccio

Joe Puccio

Joe Puccio

Joe Puccio
0?

Joe Puccio
1

Joe Puccio
X

Joe Puccio
00

Joe Puccio
0

Joe Puccio
0

Joe Puccio
0

Joe Puccio
XX

Joe Puccio
1

Joe Puccio
0

Joe Puccio
X

Joe Puccio
XX

Joe Puccio
X?

Joe Puccio
X??{

Joe Puccio
X

Joe Puccio
00

Joe Puccio
1

Joe Puccio
0

Problem 2. “Expanding our Mini MIPS” (20 points)

For this problem, you are to expand the mini MIPS circuitry that we built in class to accommodate one
more instruction. This instruction will be an auto-increment for store word (swi). For swi our mini
MIPS will perform a typical store word, but then the register used to compute the address in main
memory will be incremented by four. As an example, for the instruction

swi $tl, 0x4444($t2)
the contents of register $t1 will be stored at address 0x4444 + $t2. However, now the register $t2 will
also be incremented by four. This could be useful when iterating through an array, for example. Please
neatly and carefully draw your added circuitry directly onto our mini MIPS implementation below. If
you need to perform some trial and error first, please use a different sheet of paper.

0x@0000000.
0200000490

=N COMP 411
| miniMIPS

A
Memory

B4 °

PC<31:297:0<250>00

le; 25215 JRt: <20:16>
WASEL
J:<25:0 >
Rtoigs a1 Register ®2
3L File
P RD1 RD2 WE|<— WERF
RESET Imm: <156:0>
SEX
JlRQz Ny oC i ESE:]XT
1 \l l l \l shamt:<10:6>
Control Logic v l'f
012 ASEL \ 1 0 BSEL

[, PCSEL \F,—/‘ \—]f

N WASEL BT

N SEXT A B

N—s> BSEL ALUEN ALU WO Rrwl—"VT

N WDSEL

N> ALUFN Data Memory

N VT NY CZ Adr RD

N WERF

s ASEL

PC+
|

\0 e WDSEL

Problem 3. “Cache Memory” (20 points)

For a direct-mapped cache design with a 32-bit address, the following bits of the address are used
to access the cache.

Tag Index Offset

31-10 9-5 4-0

a) What is the cache block size (in words)?
22=32-(n+ m +2) —> block size =2"3 =8
b) How many entries does the cache have?

275 =32

¢) What is the ratio between total bits required for such a cache implementation over the
data storage bits?

total / storage bits = ((32 * 22) * (212 * 8) + 32)/2M2 * 8 = 1.089

Problem 4. “Cache Memory” (20 points)

Starting from power on, the following byte-addressed cache references are recorded.

Address

0 | 4 16 [132 [232 [160 [1024 [30 [140 [3100 | 180 |2180

a) How many blocks are replaced?

4

b) What is the hit ratio?

.25
¢) List the final state of the cache, with each valid entry represented as a record of <index,
tag, data>.

Address Index Tag Data
0 0 0 -
4 0 0 -
16 0 0 -
132 1111 0 -
232 111 0 exists
160 101 0 -
1024 0 1 -
30 0 0 -
140 100 0 -
3100 10 11 exists
180 101 0 exists
2180 00100 10 exists

Joe Puccio
2^5 = 32

Joe Puccio
22 = 32 - (n + m +2) —> block size = 2^3 = 8

Joe Puccio
total / storage bits = ((32 * 22) * (2^12 * 8) + 32)/2^12 * 8 = 1.089

Joe Puccio
4

Joe Puccio
.25

Joe Puccio
Address

Joe Puccio
Index

Joe Puccio
Tag

Joe Puccio
Data

Joe Puccio
0

Joe Puccio
4

Joe Puccio
16

Joe Puccio
132

Joe Puccio
232

Joe Puccio
160

Joe Puccio
1024

Joe Puccio
30

Joe Puccio
140

Joe Puccio
3100

Joe Puccio
180

Joe Puccio
2180

Joe Puccio
0

Joe Puccio
0

Joe Puccio
0

Joe Puccio
1111

Joe Puccio
111

Joe Puccio
101

Joe Puccio
0

Joe Puccio
0

Joe Puccio
100

Joe Puccio
10

Joe Puccio
101

Joe Puccio
00100

Joe Puccio
0

Joe Puccio
0

Joe Puccio
0

Joe Puccio
0

Joe Puccio
0

Joe Puccio
0

Joe Puccio
1

Joe Puccio
0

Joe Puccio
0

Joe Puccio
11

Joe Puccio
0

Joe Puccio
10

Joe Puccio
-

Joe Puccio
-

Joe Puccio
-

Joe Puccio
-

Joe Puccio
-

Joe Puccio
exists

Joe Puccio
-

Joe Puccio
-

Joe Puccio
-

Joe Puccio
exists

Joe Puccio
exists

Joe Puccio
exists

	B64CCC56-8E99-457B-8E5B-7AB5C6EBCC46:
	A7479003-6218-4281-A934-2671F71965A7:
	E09D7DB0-9A1A-4ADD-81D4-B35F0DA9150C:
	26788309-B153-4F38-B485-6BAB43E27AB5:
	69532D51-987D-488E-9D2C-5BF1FE01AF3B:
	52C8EB32-8081-49F2-9AA7-155A2FD1D895:

